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Abstract

In rarefied gas flow problems there are two effects which influence

the flow; (1) collisions of gas molecules with other gas molecules, and (2)

collisions of gazs tuolecules with solid sut aces (the gas-surface interaction).

This study deals with free molecular flow in which the effect of gas-gas

I collision can b- neglected and the gas-surfacc interaction has the dominate

influenca on the flow. The results of this study have application to satel-
I
1 lites since free molecular flow conditions occur at orbital altitudes above

k j 120 km.

Knowledge of the gas-surface inte-raction is required in order to

determine the aerodynamic propertiea of satellites. At satellite velocities

(7-8 km/sec) the interaction of neutral atmospheric gas molecules with the

isatellite surface occurs at energies in the I to 10 ev range. It is just

r this energy range which has not been satisfactorily duplicated in the labora-

tory; therefore, at iesenc, laboratory gas-surface interaction data can not

J be applied directly to the determination of the aerodynamic properties of

satellites. It is proposed in this study that satellite experiments be

I performed to obtain the needed information from measurements of the aero-

dynamic properties of 3atellites. In order to interpret the satellite data,



a generalized gas-surface interaction model was developed and used in the

analysis of this study.

Gas-surface initeraction models such as those of Maxwell, Schamberg,

and Nocilla, contain two or more parameters which may be adjusted to cover ak Ecer:ain range of possible gas-surface interactions. Although such specific

models may be used to develop the aerodynamic equations of satellites, the

validity of these models in this application has not been determined. The

results of this study show thac the proposed generalized model is necessary

]in the interpretation of measured satellite aerodynamic properties.

In the past, the interpretation of measured satellite aerodynamic

properties to obtain information on the gas-surface interaction and orbital

gas density has not been successful for two reasons; (i) the uncertainty in

the validity of gas-surface interaction models, and (2) insufficient data ro

allow a determination of the orbital gas density and at least two gas-surface

interaction parameters. The result3 of this study illustrate strongly the

L; feasibility of performing a satellite experiment in which accurate data could

Sbe obtained on the gas density and gas-iurface interaction parameters by

measuring the drag, spin rate slowdown and spin axis precession rate of a

spinning convex satellite.

The re3ults of the study on the aerodynamic properties of spinning

convex bodies have exhibited a oumber of interesting effects associated with

the spin of the body and the gaa-surface interaction. For example, the drag

and lift of a spinning body was found to be greater than that cL a non-spin-

jning body. It 4as also found that there exists a spin induced lateral lift

force which i3 analogous to the Magnus effect but is opposite in direction.L _ _ __

L
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In addition, spin induced --erodynamic torques, perpendicular to the spin

axis, are significant on bodies at angles of attack to the flow.

The gas-surface interaction was found to have a strong influence

in determining the aerodynamic properties cf both spinning and non-spinning

bodies. Both analytical and numerical results were obtained for the aero-

dynamic properties of foulr basic body shapes (disk, cylinder, cone, aad

7T sphere) to study the effects of spin, angle of attack, and the gas-surface

interaction.
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1. INTRODUCTION

In the free molecular flow regime, Intermolecular collisions may

be neglected and the gas-surface interaction then becomes the dominating

influence in this flow regime. For earth satellites, free molecular con-

I
ditions exist at all altitudes above 100 mi (161 km.). It is therefore

essential that the effect of the gas-surface interaction be considered in

the determination of the aerodynamic properties of satellites.

At satellite velocities, the gas molecules of the atmosphere im-

pinge on the satellite surface at velocities in the order of 7 to 8 km/sec.

13 Taking into account the molecular weight of the molecules composing the

atmosphere, the interaction energy associated with satellite velocities is in

the range of I to 10 ev. Laboratory experiments using molecular beam tech-

niques have not been successful in duplicating these interaction energies.
2

Therefore, the character of the gas-surface interaction at satellite velo-

cities and thus the effect of the interaction on satellite aerodynamic pro-

perties has not been determined. It has been possible to construct models of

the gas-surface interaction from physical principles and experimental results

obtained for interaction energies less than I ev. Such models contain two

or more parameters which may be adjusted to include a certain range of pos-

sible iit.eraction. It has not been determined, however, how well these

models approximate the actual gas-surface interaction that occurs in the

1l satellite environment.

The fact that aerodynamic properties of bodies in a free molecular

flow depend on the gas-surface interaction suggests that measurements o;

L _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

__________________________________ -
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satellite aerodynamic properties could yield information on the gas-surface

jinteraction. However, measurements of satellite aerodynamic drag have been
inconclusive in determining information on the gas-surface interaction for

I two reasons; 1) uncertainties in the satellite environment; primarily, un-

certainty in the atmospheric density and 2) uncertainties in the aerodynamic

properties of satellites and, thus, in the interpretation of the measure-

ments. Drag measurements really only determine the product of density and

drag coefficients since neither is known separately.

I The problems with interpreting drag measurements suggest that an

additional aerodynamic property of a satellite should be measured, such as

1 the slowdown rate of a spinning satellite, which, when combined with the

drag measurement of that satellite, would provide a meane of separating the

effects of density and drag coefficient or gas-surface interaction. Analyses

If of this type have been performed on drag and spin rate decay data for paddle-

Twheel shaped satellites, from which estimates of the density and a gas-sur-

I 3,4
face interaction parameter were obtained. These results are, however.

subject to uncertainties which are much the same as those associated with

drag measurements. First, since the measurements of drag and slowdown rate

jwere a function of at least three unknowns (orbital gas density and two or
I ~ more gas-surface interaction parameters), a value for at least one of the

4P unknowns had to be assumed in order to obtain estimates of the other two.

Secondly, since the validity of any particular model of the gas-surface inter-

action has not been established, the interpretation oi measurementn may be

made, as in References 2 and 3, using a number of diffecent models.

ii
(I___ _ _
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Since each model used produces a different estimate of density, the experi-

ment is able to determine only a possible range on the density.

The first point made above suggests that additional aerodynamic

properties should be measured in order to remove the necessity to make

assumptions which can introduce errors in the interpretation of the measure-

ments. There are six aerodynamic properties to he considered corresponding

to three components of force and three components of torque acting on a

satellite; however, the properties must not only be measurable but must also

be independent functions of the quantities to be determined. The free mole-

cular aerodynamic properties (drag, lift, and torque) of non-spinning bodies

are known to depend on the angle of attack of the body and the gas-surface

interaction (see for example References 5 and 6). For non-spinning satel-

lites, however, the cts of lift and torque properties cannot be easily

assessed because the orientation of the satellite with respect to the flow

is usually unknown and probably random. Spinning satellites, on the other

hand, maintain relatively fixed orientations in space. If the orientation

of the SPi, axis of the satellite is known, iL iS possible to determine the

angle of attack on the satellite with respect to the flow at any position

in the orbit. This suggests, then, that the aerodynamic properties of spin-

nfihg satellites may provide the measurables needed for determining the gas

density and gas-surface interaction paramet.'ers.

Past studies of the free molecular aerodynamic properties of

spinning bodies do not, however, provide a sufficient basis for proposing

a satellite ewperiment such as suggested above. The analysis of aerodynamic

torque on spinning satellites is usually made on an approximate basis



4

considering only the moments of drag forces about the center of mass of the

satellite (see for example References 7, 8) which, in general, do not give a

complete understanding of the influence of the gas-surface interaction.

More exact analyses of the aerodynamic torques have been made in References

9, 10, and II for the case of a spinning spherical satellite in which it was

found that the aerodynamic torque properties are strongly dependent upon a

single parameter of a specific gas-surface interaction model.

The objective of this study is to analyze more fully the influence

of the gas-surface interaction on the aerodynamic properties of spinning

bodies and to propose satellite experiments to iccurately determine the gas

density and the gas-surface interaction.

In order to remove uncertainties introduced by a variety of pos-

cible gas-surface interaction models that can be used in such a study and

satellite experiments (second point made aoove), a generalized gas-surface

interaction model is developed which is designed to cover a wider range of

possible gas-surface interactions than models currently being used. The

generalized model contains currently accepted models as subclasses and has

the additional advantage of being able to incorporate laboratory results

and models which may be suggested in the future. The description of this

generalized model is given in chapter 2.

In chapter 3, the generalized model is used to develop the equa-

tions expreasing the aerodynamic properties of spinning and non-spinning

bodies in a free molecular flow. The results obtained may be interpreted

in terms of any of the gas-surface interaction molels contained as sub-

classes in the general model. The aerodynamic equations are developed in

1!
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a general manner which makes them applicable to bodies of various shapes.

In chapter 4, results are obtained for a disk (or flat plate),

cylinder, cone, and sphere for arbitrary angles of attack and for both the

Lspinning and non-spinning cases. These results reveal the strong influence

of the gas-surface interaction on the aerodynamic properties of spinning

bodies.

In chapter 5, the aerodynamic properties of spinning satellites

is studied to determine the importance of the gas-surface interaction on the

average aerodynamic properties of satellites. These results suggest pos-

sibilities for performing satellite experiments. The random tumbling pro-Fi
blem is also studied in this chapter.

3In chapter 6, satellite experiments are proposed and the feasi-

bility of performing these experiments is investigated by assessing the

'B possible accuracy and the magnitude of measurable quantities needed to

determine the unknowns of atmospheric density and gas-surface interaction

parameters.

lThe feasibility of the proposed satellite experiment is enhanced

by results obtained in a study performed by the Coordinated Science Lab-

oratory pertaining to the measuremenc of satellite precession rates which

could be caused by a general relativity effect. This study determined that

extremely accurate measurements of even small precession rates are possible

by using a completely passive optical readout techniqie utilizing observa
12,13

tions of sunlights reflected by the satellite surface. On this basis

then, it is proposed that for certain satellite shapes there are at least

three measurable aerodynamic properties (drag, slowdown torque, and

_____________________
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precession torque) which can be utilized to dctermine inore precisely the

I atmospheric density and the character of the gas-surface interaction at

satellite velocities.

Ir

11

I

2

VT

It

I"

r



7

2. A GENERALIZED GAS-SURFACE INTERACTION MODEL

Insufficient information is available at present to warrant choos-j

ing a specific gas-surface interaction model to represent the reflection of

molecules which impinge a surface at satellite velocities. For this reason,,I
a generalized gas-surface interaction model is developed such that it con-

tains various possible gas-surface interaction models or subclasses includ-
14 15ing the models of Maxwell, Nocilla , and Schamberg

The generalized model will be used in the development of equations

to express the aerodynamic properties of spinning bodies in subsequent

Fl chapters. The resulting equations have the advantage that they can then be

interpreted in terms of any of the gas-surface interaction models contained

as subclasses of the general model.

2.1. A Generalized Model for the Interaction

&Consider a stream of mono-energetic, 'ni-directional neutral gas

U molecules impinging upon a solid surface at an angle of e with respect to

the plane of the surface (see Figure 2.1). Also consider that the molecules

are all reflected in a beam which is axial symmetric about an axis which

makes an angle e. with respect to surface, in the plane formed by the imping-I

ing molecules and the surface normal (see Figure 2.1). The subscript, j,

on . may take on values of 1,2,3---to represent cases in which the reflec-

tion can be modeled as being composed of two or more beams which are axial

symmetric about axes which make angles with respect to the surface of G

e2 , e3 -- - - - respectively. The purpose for adding the versatility of[2



ii 8

/ Distribution

/f of Beam

IJ & / iSurface

RS-420

Figure 2.1. Notation uised in the generalized model.
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of using more than one reflected beam will be illustrated later in this

chapter. For the present, however, consider the beam in the ej direction.

In order to describe the gas-surface interaction, the following

three quantities must be determined about the reflected beam.

i. The velocity.

2. The angle of reflection.

3. The number flux.

The relations of these three quantities with the incident beam properties

are described in the following three sections.

2.1.1. Reflected Velocity

In general, the velocity of individual molecules reflected from

the surface will be distributed in some arbitrary manner. The distribution

EN of velocities of a large number of reflected molecules could be, for example,

Maxwellian, or constant (no distribution), or any one of any numerous

possible distributions. For purposes of calculating the force on the surface

in free molecular flow, however, the specific distribution of velocities is

not important since once the molecules leave the surface they do not again

[ hit the surface, and they do not collide with the impinging molecules.

[ Only the average velocity of the reflected beam is needed in

fdetermining the momentum of reflected molecules and then the force on the

surface. Therefore, a vector velocity U. is defined to represent the

average velocity of the beam of molecules reflected in the direction e.
-4

The velocity U. is also in the direction of 0. since the beam is assumed to

be symmetrical in veloLity stribution about the axis at angle 0.
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in order to relate the magnitude of velocity U. with the magnitudeOJ

of velocity U (velocity of impinging molecules), a parameter a. is introduced,

I ~ where

U. - U-. 2.1

The parameter a. is defined in this manner to facilitate the

reduction of the generalized model parameters to the parameter of other

models. Equation 2.1 ic equivalent to writing

72"? U.2

-s a. =i - 2.2
-J 

U2

which is often referred to as the definition of the thermal accommodation

I coefficient. However, the designation of thermal accommodation coefficient

is rather vague and ill defined. The thermal accommodation coeffidient, a,Iis also often defined as
T. T

C1 = _ 1 r 2.3
T. - T

1. 

r

where Ti is the temperature of the incident gas molecules, Tr is the temper-

-' ature of reflected molecules and T is the temperature of the surface (wall).

If the temoeratures are understood to represent the kinetic temperatures,
-9

and if T /T. << I then Equation 2.3 may be written as

"T 
U2

E o e ha---K = I -Eai r 2.4T. U 2

The right hand side of Equation 2.4 is similar to the definition of a1. in

Equation 2.2 except that U.j in Equation 2.2 represents the average velocity

in the e. direction while the velocity U represents the velocity associated

I
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with Tr, the temperature of the reflected molecules. The operation in

Egoing from temperature to velocity in Equation 2.4 depends on the distribu-

tion function of reflected molecules and also on the definition of temper-

Eature. For the purposes of this study, Equation 2.2 will be used without

Freference to temperature.

2.1.2. Angle of Reflection

The reflection of a beam of molecules from a solid surface was

Ufirst considered by Maxwell to be analogous to the reflection of light

9 from a surface. He postulated that molecules could be reflected elastically

or specularly much as light from a perfect mirror, or the molecules could

Ureflect diffusively as light does from a rough surface (see Figure 2.2).
Even though this treatment of the angle of reflection may be elementary,

ithe Maxwell model has found wide applications.
Tn 1959, R. Schamberg 15 proposed a gas-surface interaction model

which allowed for reflections at angles between the limits of specular and

diffuse. Schamberg postulated that the angle of reflection should be

related to the angle of incidence of the molecular beam., As an example of

such a relationship, Schamberg introduced a parameter, V, defined by

cos r s r)=; (o > 1 2.5

where r is the angle of the reflected beam of molecules and 6i is the angle

of incidence. In the limits of 1 = i and v - c, the Schamberg model reduces

to the cases of qpecular and diffuse angles of reflection respectively.



1,2
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Although recent experimental results using molecular beam tech-

niques indicate that Equation 2.5 is not in general correct, experimental

results do indicate that the angle of reflection is a function of the

angle of incidence.(the experimental results will be discussed later in

this chapter). In order to include an angle-of-reflection law in the

generalized mudel, consider the functional relationship between the angle of

reflection, 8, and the angle of incidence, 8, to be in the form of a

general polynomial of degree N. That is, let

N
0.j = a. + Z (bj)n Bn 2.6

Sn=1

where a and (bj)n: n = 1,2,...N are constant coefficients.

As appropriate experimental results become available, the constants

a, and (b ) can be found by fitting a polynomial to the experimental data.

Since appropriate experimental data is not now available, assume, as a first

approximation, that the functional relationship for the angle of reflection

is linear in 0. That is, let

0. = a. + b.a 2.7

which ontains the two unknown constants a. and b.. Unless there is a

systematic irregularity in the surface, the reflection of a molecule beam

which is incident normal to the surface (e = 1) should also be normal to

the surface (0. = 8). Using this reasoning, one of the unknown constants in

Equation 2,8 can be eliminated to obtain a functional relationship dependent

upon only one unknown constant, P, where

0. = P + (1-P) e 2.8
2iLiL
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This form of the angle-of-reflection law will be used in later chapters to

illustrate the effect of angle of reflection on the aerodynamic properties

of convex bodies in free molecular flow.

2.1.3. Reflected Number Flux

If a solid surface is neither a source or sink for molecules, the

4 number flux of reflected molecules must equal the number flux of incident

molecules. The number flux of incident molecules, N, ts defined as

~~ N n 2.9
m

I jwhere p is the density of the incident gas, n is the unit normal to the

surface, and U is the incident velocity with respect to the surface. If

all the molecules were reflected in a single beam, m U n.
reflected

- For the generalized model, a parameter aj, is introduced which relates the

number flux reflected in the e. beam, N., with the incident number flux.
.3

Let

S m U. n 2.10

For cases when all the incident molecules are reflected in the e. direction,

.j = I. For the more general case when the reflection is composed of J

.3

symmetric beams having direction 8l, 2) .... 38j

1' Z a 1 2.11
whrj=l

where J is the number of reflected beams.
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2.1.4. Parameters of the Generalized Model

Three separate parameters have been introduced which define the

gas-surface interaction in a generalized manner. The average velocity of

the reflected molecules is related to the velocity of the incident molecules

by the parameter a. where the magnitude of U. is given by
3 3

u .u/l- 2.12
J 3

The velocity U. is a vector having direction defined by the angle of reflec-3

tion 0.. As a first approximation, e. is related to the angle of incidence

e by the parameter P. given by

e. P r. + (I-P) e 2.13

The number flux of molecules reflected in the beam which is symmetrical

about the e. axis is related to the incident number flux by the parameter
3

Riven by

.m N = a p U n

1 
where

j=] 3

and where J represents the number of syrtimetric beams.

2.2. Subclasses of the Generalized Model

For each reflected beam, the parameters aj, U., and Pj must be

specified to determine the force on the surface. By proper choice of these

parameters, the generalized model can be reduced to more specific gas-surface
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interaction models. This procedure is illustrated in the foliowing three

sections for the models of Maxwell, Schamberg, and Nocilla.

2.2.1. Reduction to Maxwell Model

In the Maxwell reflection model, the reflection is divided into

two components, specular and diffuse. Define

ad = fraction of incident molecules 2.14
which are reflected diffusely

(l-ad) = fraction of incident molecules 2.15
I &which are reflected specularly

" ~The velocity of molecules reflected specularly is defined as being equal to

the incident velocity and angle of reflection is equal to the angle of

incidence (elastic collision with the surface) (see Figure 2.2). For the

-diffusely reflected component of the reflection consider the velocity of

, reflection to be -elated to the incident velocity by the thermal accommoda-

tion coefficient aT where

T. - T
C- r 2.16
T T. - T

. w

-, where Ti, Tr, and T are defined as in Equation 2.2.

The Maxwell model is obtained from the generalized model, as

t[ follows.

First, consider the specular component of reflection and let this

be beam j = 1. Then, let

a1  0 or U l = U

= (1-a d) 2.17

e1 = or P 0
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Lel; the diffusely reflected component of reflection be beam j 2.

Then, let
Tw

a2 =T or U2 =/1-_aT U; i << 1

a2  ad 2.18

22 or 2

The force on a surface, due to'the impingement and subsequent

reflections of the Maxwell type, is then

F U n (U - al 1 - 2U2 )

4 -4 -4

Sn d ) ( I 2) 2.19

where U = U having direction e and U2 = Jl-ciT U having direction

2.2.2. Reduction to SchambergModel

The Schamberg model already has much in common with the proposed

generalized model in that the reflection is considered as being in a beam

which is axially symmetric about an angle which is not necessarily in the

specular or diffuse directio-. The principle differences between the two

models is the manner in which the reflected velocity and the angle of reflec-

tion are defined.

In the Schamberg model, a specific form for the distribution of

velocity in the reflected beam is given. The velocity of reflected mole-

cules are assumed to be equal in magnitude but distributed in direction and

number according to a cosine law within a beam width of angle o (see Figure

2.3) given by
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n r() = K cos 2.20
0

where nr is the number of re-emitted molecules per unit time whose direction

of re-emission (relative to the axis of the beam) lies between 0 and (O+dO).

The constant K is related to the number flux of reflected molecules and is

dependent upon whether the reflected beam is two-dimensional (wedge shape)

or three-dimensional (conical shape).

To reduce the generalized model to the Schamberg model, the

average velocity of the reflected beam must be found. For a three-dimen-

sional conical beam the average reflected velocity can be determined from

expressions derived by Schamberg,

Uj 3(0 )V 2.21

where §3(0o ) is defined in Schamberg's 1959 paper, and Vr is the magnitude

of the constant velocity of individual molecules in the reflected beam.

The quantity §3(0o) has a maximum value of one for 00 = 0 and a min.imum.

value of 2/3 for = The velocity V is related to the incident velocityr

V (or U in the notation being used for the generalized model) by a thermal

accommcdat'on coefficient,a, which has been defined in Equation 2.2, i.e.

IT= Vr V. 2.22r 2

Substituting Equation 2.22 into the expression for Uj in Equation 2.21, the

following expression relating U to U is obtained.

j . =u 2.23

r Therefore, in order to reduce the generalized model to the Schamberg model,

the parameter ot must be defined as
h a J

j4
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I
"/- 1 = -C1 3 (00) 2.24

? I The two parameters, a and 00, of the Schamberg model are then reduced to one

parameter a'.

The angle-of-reflection law proposed by Schamberg is given by

cos e. (cos 0) 2.25H'j
and was discussed briefly in section 2.1.2. A plot of Equation 2.25 for

Wi various values of v is given in Figure 2.4. A rough approximation to

variation in e. as a function of e for the Schamberg model can be made by

discontinuous linear relationships. For example,

8. = a.+b.e, for 0 < 9

* 2.26K = C +dja, for >e

For the Schamberg model Equation 2.25, the e. vs 0 curves all pass through

the (0,0) and (2,3) points. Using this information, a = 0, c, (1-d.).

Also, using the fact that at 9 = the two lines intersect, Equations 2.26

reduce to

=~ ~ ---- 9'8 for <@

fo.-*2.27

3E (l-d) + d.9 for 9 _ 6e2

A one parameter family of discontinuous lineat curves can be developed from

Equations 2.27 for a choice of a relationship between e and 0. This is

illustrated in Figure 2.5 where 8 was chosen to occur along the line from

(0, 2) to (',0). The approximation illustrated in Figure 2.5 retains the

essential characteristics of the Schamberg cosine variation.

-i!
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2.2.3. Reduction to Nocilla Model

Nocilla14 postulated that the distribution of re-emitted molecular

velocities be a drifting Maxwellian having a drift velocity of U in the
r

direction e . The distribution function of reflected velocities is written
r

(nr exp 2RT ] 2.28
r (2TRT r ) r

l where C is the molecular velocity. Since number flux must be conserved at

the surface, n can be related to the incident number flux. There are, then,

three parametrs remaining to describe the reflection, U, 8r, and T
r 0r2 r

Nocilla has shown that the model can be made to closely match the

distribution obtained experimentally 6y Hurlbut 16 , for proper choice of the

quantities Ur, er and Tr . However, Nocilla doesn't propose an angle-of-
reflectLon law or a relation between the incoming and reflected velocities.

Therefore, in order to develop an interaction model using the distribution

function proposed by Nocilla, these relationships must be provided.

The Nocilla distribution function for reflected molecules has been

ap';Iied to the calculation of forces on a solid surface in free molecular

flow by Hdrlbut and Sherman.6  Their results can be used to show that the

Nociila model is a subclass of the proposed generalized model.

The force on a surface due to a reflection of the Nocilla type is

divided by Hurlbut and Sherman into components in the direction cf the

incoming beam, Dr, and perpendicular, L. (See Figure 2.6).

[
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2
n mU

D r 2 (r r 2 r
r

- Sr cos 0r (X(ar)) cos 8] 2.29

n u2

L r r + 2 + (1+erf ar) cos e
r

+ Sr cos er [x(ar) sin e] 2.30

where

S r = Ur/(2RT )2

r = Sr sin 2 r 2.31

-r 2X(ar ) = e + )ar

If the term X(a r) is factored out of Equations 9.29 and 2.30, and

if the expression for a in Equations 2.31 is used, D and L become.r r r

D rmXr 2  k (l+erf a .sn)

Dr = 2S 2k Xr) [-Sr ccs (0 + er) + 2 (erf r sin ]
r

2.32

nmU 2 s + (l+erf r)
L rr X(Or) [r r Cos @[2Tr kS r2 r r 2X\Or/

From these equations, it is apparent. that the vector force on the surface

due to 4 reflection of the Nocilla type can be divided into components

normal to the surface and in the direction of the velocity U . From

Equations 2.32

nrmU 2 XL)+[- + (l+erf Or)

reflection k 2 r U X(ar) 1 2.3
27r S r r
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The outgoing number flux N is given byr T
N = n, - V 2.34

Nr r X(Or)

j Substituting Equation 2.33 into 2.34 and using the conservation of mass

flux condition

Wi mN r N = pUn 2.35

Equation 2.33 reduces to

r reflection u' L L-Ur + C Jr ' 2.36

where

(21,T) -

G() 2X( ) [r (l+erf 'r" 2.37

-* In terms of the proposed generalized model, a reflection of the

Nocilla type can be considered to be composed of two beams, one normal to

surface and one in the direction of Ur. The parameter aj is not needed

since conservation of mass flux is automatically satisfied by the two beams.

Let beam j = I be in the U direction. Since one is free to choose

i .relationships for the U and er , let
r

U =ql/.--- U. and e P + ('r) e 2.38r r

I Consider beam J 2 to be nor.al to the surface. Then

Ti, = G(;r) = §(r)cr  2.39

where

c = (2RT )r rH
I.
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then from Equation 2.37, define

) = TT l+erf ar 2.40
r 2 X(or )

rr
Assuming the the velocity cr is related to the incident velocity u by the

thermal accommodation coefficient o,

c =Vl-a U 2.41

we can define the parameter l 2 as

2I-- = (ar) 2.42

The reduction of the generalized model to a model using the

Nocilla reflected distribution function is now complete. The model obtained

still contains three parameters; Cer' Pr' and c2' This form of model serves

to illustrate some intercsting characteristics of the Nocilla distribution

function. The forces caused by a reflection of the Nocilla type are seen to

have the character of a Maxwell reflection model except that, instead of a

specular component, a Ur component is employed. Also, similar to the Max-

well model, the magnitude of the U component of reflection is seen tor

determine, except for one parameter, the magnitude of the normal component

of reflection. The normal component of reflection is analogous to the

[" diffusion component in the Maxwell model. Figure 2.7 shows a plot of the

coefficient of the normal component of the Nocilla distribution function,

[a(or ), as a function r . The term ar is equal to the p-odnct uf Ur and

sin er divided by c . From Figure 2.7, as U becomes large compared to c
Sr r r

the magnitude of the normal component becomes small. At er = 0, the normal
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component has a maximum value of .89 c . Due to its dependence on sin 9ri

the quantity ar can not in general be assumed to always be large. However,

under the special conditions of U being much greater than c and P greaterr r r

than zero (this condition on P insures that sin er and therefore or will

not be zero), the quantity (a) may be assumed to be small in comparison

to the U component of reflection. Under these conditions, the Nocilla
r

distribution function resembles the type of reflection described by the

generalized model with the average velocity U. replaced by the velocity Ur
Jr

of the Nocilla distribution.

2.3. Incorporation of Experimental Results

2.3.1. Current Status of Molecular Beam Experiments

Molecular beam experiments have not as yet been able to obtain

results which could be directly applicable to the calculation of forces and

torques on a satellite. The major limitation in molecular beam experiments

is the inability to produce a neutral molecular beam of sufficient intensity

and at a velocity which corresponds to the velocity of impingement of

atmospheric molecules on a satellite in near earth orbit. In terms of the

energy of interaction, the range of I to 10 ev corresponds to that which

occurs in a near earth orbit. Interaction energies below I ev have been

obtained by aerodynamic, methods such as expansion of a high pressure gas

through a nozzle. On the high energy side of the I to 10 ev range (10 ev

and above) neutral molecular beams have been obtained by the method of ion

acceleration with subsequent neutralization by charge exchange techniques

(see for example Reference 2).

[ _
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Although the energy of interaction is of primary importance in

J determining the character of the gas-surface interaction, other factors

such as the satellite surface conditions and composition of gases incident

on the surface are also believed to influence the interacfiin. The major

limitation in duplicating these factors in molecular bean experiments has

been that satellite surface condition and atmospheric composition remain

uncertain.

-As can be concluded from the above discussion, available ex-

perimental results are probably not applicab.le for determining accurately

the values of the gas-surface interaction parameters for the calculation

of aerodynamics forces on satellites. However, molecular beam experiments

outside the I to 10 ev range could for example suggest the form of the 0.

vs 0 relationship, or, indicate trends in the character of the interaction

which could be extrapolated to the I to 10 ev range.

2.3.2. Incorporation of Intensity Distribution

The majority of experimental work is aimed toward obtaining

information on the distribution function of reflected moleciles because

all other flow pronerties can be found from the distribution function.

For application to calculating forces on convx satellite shapes, however,

less detailed information can be used since the actual form of the distri-

bution function is unimportant. The generalized gas-surface interaction

model developed in section 2.1 suggests the type of experimental data

which would be most useful for satellite application. For example,

II
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distribution of reflected intensity provides information on the number of

beam components (single lobed, J = i; bi-lobed, J = 2; etc). Also, inten-

sity distributions obtained for various angles of attack to the incident

beam reveals characteristics of the O. vs e relation. As an example, the

experimental results of er vs e for high velocity argon beams on heated
17

platimum obtained by Moran, Wachman, and Trilling are plotted in Figure

2.8. These results show that as the beam velocity increases, the para-

meter P. (using the first approximation for the e relationship) approaches

zero. These results show a slight departure from a linear relation in er

vs e at low incidence angles. The departure is opposite to that postulated

by Schamberg's (see Figure 2.4) cosine powered relationship.

r! Overspecular (0. < 9) and backscatter ( 0 >T ) results can not

be reproduced in the Schamberg or the Maxwell model. Such results are.,

however, easily incorporated into the generalized model. For examplE,

backscattering results could be approximated by a linear relation by

allowing P. to take on values between I and 2. Overspecular results and

over-backscatter (9. > - ) could be approximated by 2nd or 3rd degree

polynomials or by discontinuous linear relations. These regions are

indicated in Figure 2.9 with examples of the possible angular relationships.

2.3.3. Incorpotation of Force Measurements

I Force measurements made on flat surfaces at angles of attack to a

molecular beam can yield considerable information on the gas-surface inter-

action and the results are particularly suited for analysis in terms of

I
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the generalized model. Since the force on the surface due to the impinge-

ment can be obtained from measured beam velocity and intensity, the force

due to the reflection of molecules can be directly obtained. Therefore,

the magnitude and direction of the reflection force can be determined to

yield information on the 0. vs 0 relationship and also rhe value of a/l-a..

In order to properly analyze force measurements in this manner, however,

it is necessary to know the number of beam components which make up the

reflection. Experiments set up to measure forces are not usually set up

- to measure the distribution of intensity which could reveal the number of

beam components. In the absence of such information, special measuring

techniques can be employed to obtain the desired information from the force

18
measurements. For example, the technique employed by Boring and Humphris

to obtain reflected force in the directions normal and tangential to the

surface can be extended to obtain measured values of the reflected force

-" at angles between those two limits. The results would reveal the lobal

maxima of the beam components and thereby yield information on the 8.

relationship and the quantities a jl-(X.
i i

2.4. Significance of the Proposed Model

-. The generalized gas-surface interaction model developed in this

chapter oas shown to be reducible to three currently accepted gas-surface

interaction models. In addition, the generalized model is found to be

applicable to approximating a wide range of possible gas-surface interaction

I 1by including the possibilities of over-specular and backscatter rei'ection.
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The generalized model is found to also be useful in the interpretation of

laboratory experiment results, as illustrated in Figure 2.8, in order to

indicate trends and similarities in laboratory data.

The generalized model described in this chapter has incorporated

I) the effect of the angle of incidence on the angle of reflection and

2) the effect of the incident velocity on the reflected velocity. These

are undoubtedly the major factors L ancing the gas-surface interaction.

Additional factors, however, can readily be incorporated into the gen-

eralized model. For example, the velocity of reflection could be considered

to be a function of the angle of incidence as well as a function of the

incidert velocity. This effect is, in fact, incorporated in the results

obtained in the reducticn of the generalized model to the Nocilla model.

The generalized model could also be extended to include the possibility

that a. and C'. are both functions of U and e. Although refinements such as
J J

these will not be included in the application of the generalized model in

the work which follows, they may be incorporated whenever warrented.

1: The generalized model employs three parameters j, aj, and P.

for each beam of the reflection. The two parameters y. and x. determineJ J

the magnitude of the force due to the reflection and the parameter P.

determines the direction of that force. When using the generalized model,

as will be seen in the following chapters, the quantity a 11-c. can be con-

sidered as a single parameter in place of both a. and a .. That is, speci-13 3

fication of the two quantities cjrl-jC and P. are sufficient for determin-

ing the force and torque acting on a convex body in a free molecular flow.

In the analysis of subsequent chapters, the generalized model
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will be employed in the development of equations which express the aero-

dynamic properties of bodies in a free molecular flow.

I

I

I

Zr
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3. BASIC AERODYNAMICS EQUATIONS

The generalized gas-surface interaction model is applied in this

rchapter to the development of the equaLions for expressing force and torque

acting on spinning bodies in free molecular flow. The resulting equations

have wide application since they can be interpreted in terms of many specific

models. The equations for drag, lift, and torque are obtained in differ-

ential form for four body shapes in particular (disk, cylinder, cone, and

sphere). The results will be used in the next chapter to study the effects

of spin and the gas-surface interaction on the aerodynamic properties of

bodies of these shapes.

3.1. Basic Equations of Force and Torcue

Consider a surface element, dA, on a spinning body. If the posi-

tive normal of that element of surface is n, the mass flux impinging on the

surface is

-pU n dA

where p is the density of the free stream gas and U is the vector velocity

of the incident flow relative to the surface. The velocity U is assume:d to

be much higher than the thermal motion :,f the free stream gas so that ran-

dom fluctuations in the velocity can be.neglected (hypothermal assumption).

The mass flux is a positive number since the quantity (U.n) must always be

f negaLive in order for molecules to hit the surface. The vector force on the

surface due to the impingement of molecules is given by

I
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(d)inciden t  U-.n dA) 3.2

where the notation dF is used to denote the force on the surface area dA.

tj Using the notation introduced in the preceding chapter for the

generalized model, the vector force due to the reflection of molecules is

I given by

(dF)reflection  - j. (-pU.n dA) 3.3

where the minus sign is required because the vector velocity U. must be in

the direction away from the surface. For cases in which the reflection is

Tcomposed of more than one beam component, the force due to the reflection

is given by

(d') f i= -(ii + a 2U2 + .. ° + a I)(-pU.n) dA' 3.4

where J is the number of beams making up the reflection, Since the re-

peated subscripts can be used to imply the summation, Equation 3.3 will be

used in the development of equations which follow.

The total vector force on the element of surface is the sum of

force due to impingement and force due to reflection given by

dF = -(U - a.U.) p U'n dA 3.5

Consider the element of surface dA to be at a point defined by

the radius vector, R, from the center of a coordinate system attached to

the body. The vector torque, dT, about the center of the coordinate system

caused by the impingement and reflection of molecules on the clement of sur-

£face dA is then

"-



I

1 39

dT -Rx (U- ajU.) p [n dA 3.6

Equations 3.5 and 3.6 form the basic equations necessary for

determining the force and torque on a convex body in free molecular flow.

These equations are not applicable to concave body shapes which allow

molecules reflected from one part of the body surface to impinge again on

the body.

3.2. Aerodynamics Equations for a Class of Spinning Body Shapes

For spinning bodies, the velocity of impinging molecules with

respect to the surface elements depends upon the spin rate and position of

the surface element with respect to the spin axis. Let U be the freel, "CO

stream velocity and let the spin rate of the body be defined by a spin

vector, (. The vector velocity of impinging molecules with respect to any

point on the surface exposed to the flow is then given by

where R is the radius vector from che center of a coordinate system attached

to the body (see Figure 3.1).

The reflected velocity vector, U., is also dependent upon position

on the surface and spin rate since the magnitude and direction of U. isJ

related to the magnitude and direction of the incident velocity U through

the parameters introduced in the generalized model. For a given body shape

(within the class of convex shapes) the velocity vector U. can be written in

terms of the vectors U, n, 0, and R and the appropriate gas-surface inter-

action parameters. For example, consider the class of body shapes which

,[
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Figure 3.1. Vector position of surface element in the flow.

IiII



SI

41A
have circular cross section at any point along the spin-axis. For this

class of body shapes, a iucal unit tangent vector, t, can be defined as

L XR

__ . -- t 3.8

-4-
where QCXR , represents the magnitude of the vector quantity OXR.

Since n is the local unit normal vector to the surface element

dA, a third unit vector, m, can be defined to form a triad.

m n (QXR) 3.9

ie unit vector m is also locally tangent to the surface. Consider now that

the incident velocity vector, U, has component U n,Ut,U in the directions of

Sn, tm, respectively. That is, lec

.4 -4 -4 -

UU t + Um m+ U n 3.10
t m n

Also, let U. be defined in this coordinate system as

. =U. (U + (U.) m + (U.) n 3.11i j (Ujt j

If the angle 0 represents the angle of incidence with respect to the surface

plane (see Figure 3.2), the components of U are given by

Ut = U cos a cos

U = U cos e sin y 3.12

U = -U sin eE n

where U is the magnitude of the incident velocity and y is the azimuth angle

of incidence defined in Figure 3,2.

• r
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Figure 3.2. Local coordinate system on the surface element.
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A Since the reflection is in the plane of U and n, the comporents of

U. can be written in terms of 0. and y.

(U.) t = -U. cos e. cos 7
33

(U.) = -U. cos e. sin - 3.13

(U.) = -U. sin
in i

where U. is the magnitude of the reflected velocity, U.. The quantity U. is
J j*

related to the quantity U by the expression given in chapter 2. That is,

U. = jl-i. U 3.14

The angle y is found in terms of the vector U, by the f'ollowing identities

U-t
U cos -c

Y m. 3.15
sin -cos e

l-Un

U
low U sin 8

Using Equations 3.15 and 3.14 in Equations 3.13, Equation 3.11 becomes

cose.- cosO iG
s.) t + -U- (U.m) m (sin U.n) nj 3.16

Using the definitions of t given in Equation 3.8 and m given in Equation 3.9,

Equation 3.16 reduces to the following form

cos.
U. Ul M U~R] M2R (kXRI2j cos

cose.[+ __cose 1 [U.nx(OX)] nx(DXR) (,1iC2 )-l

sin.

" sing 3.17

V
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Equation 3.17 is valid for any body shape which is both convex and

Shas circular cross sections at any point along the spin axis. For shapes of

this class, the vector QXR is always perpendicular to the unit normal vector

I -n. Therefore, using Equation 3.7, the following can be obtained

- 4 -4-S.n = (U - QxR).n = U -n 3.1V8

- Substituting Equations 3.18, 3.17, and 3.7 into Equation 3.5, the

vector force on an element of surface of a spinning body having circular

7 cross-sections about the spin axis becomes

dF = -p(.)n)d -U. XR2 + C. - xO

..3.19

+ C (I-lX) -f -.- x(XR)J nX(CXR) - S. [-U .n] }

where

cose.
C. J 3.20

j = -j cose

sing.
-anS.= a.j/l- ------ /: 3.21

'-jand Sj j sine

-t

The equation for torque can be obtained directly from Equation 3.19 by tak-

ing the cross product with the vector R.

In the above analysis the force and torque acting on a spinning

body are expressed in terms of the parameters of the generalized gas-surface

interaction model. For a given body shape in the class of shapes for which

Equation 3.19 is valid, the vectors U 2, R, and n are known. In the
CO

following sections, the force and torque equations will be developed for*

four basic body shapes (the disk, cylinder, cona, and sphere) which will



II
K45

illustrate the application of Equation 3.19. The results will he analyzed in

the following chapter for specific values of the generalized gas-surface inter-

o action parameters.

3.2.1. Coordinate Systems

Two coordinate systems will be used in the development of equations

for the disk, cylinder, cone, and sphere. The two coordinate syscems which

are the same for each case are defined as follows.

Consider first a coordinate system (x,y,z) which is attached to the

:free stream velocity vector, Uc. The positive y axis will always be defined
to be in the positive U direction. Consider now a body having a spin vector

. Let a coordinate system (Xs,2Ysz s) be defined in which the z axis is

always in the direction of the spin vector D. Furthermore, consider the z

ss

t axis

the x,y,z coordinate systems and in the x-z plane. Also consider the x5 axis

to be initially collinear with the x axis. The coordinate systems are shown

in Figure 3.3.

The x ,y,) and z coordinate system associated with the body is not~

a co-rotating system with the body. Only the zs axis is rigidly attached to

the spinning body by always being in the direction of the spin rate vector 0.

The xs and ys axis remain fixed in inertial space as the body rotates, if no

torques act on the body. If the body is acted on by external torques, the

[ rx and ys axis will rotate as a function of the precession rate caused byXs s

the external torque. For cases in which the free stream velocity vector is 4

i
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fixed in inertial space, the (x,y,z) system is an inertial system and the

two coordinate systems are similar to those which would be set up for the

classical top problem. 19 The case for which % rotates in inertial space

(such as for a body in orbit) is taken into consideration in a later chap-

ter by referring the results obtained using the coordinated systems

defined above, by a coordinate transformation, to a true inertial reference.

The component of force in the y direction will be referred to as

the drag.component while the x and z components of force will be termed

(lift)x and (lift) . In terms of the components of force on an element of

[surface, the vector force is given by
dF = d(lift) i + d(drag) j + d(lift) k 3.22x z

where i,j,k are the unitvectors along the positive x,y,z axis. The dif-

ferential notation is used to denote the vector force on the element of

area, dA.

The vector torque is divided into components along the x ,ys,

z axis. The component of torque along the z axis is termed slow-down

torque, T . The x and y components of torque are perpendicular to the

spin axis and are denoted by Tis and t The vector torque dT is then
5 5

given by

dT =d(T i + d(T. ) j + d(T ) k 3.23
1 S is s k s

where iS Js,k are the unit vectors along the positive x ,y ,zs axis.

r The surface element dA of the body is at a point defined by the

radius vector R from the center of the coordinate systems. In the

F

iS
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subsequent development, cylindrical coordinates about the z axis are em-g ~S
j ployed in which an angle g is defined ac measured from the positive x axis

s

to the projection of R onto the x-y plane (see Figure 3.4).

3.2.2. Spinning Disk at Angles of Attack

A disk spinning about th2 surface normal is in the class of body

I; shapes for which Equation 3.19 is valid. Consider a circular disk of radius

rd with spin vector Q normal to the surface at the center of the disk. Fig-

ure 3.5 shows the disk with the centers of the coordinate systems, defined

above, at the center of the disk. The following vectors are required to

find the force and torque components acting on the disk. Referring to Fig-

t j ures 3.3, 3.4, and 3.5

U =U j=U cos j - U sin 6 kW O 01 ss C s s

t | s
S 3.24

R r cos g i + r sin g j

n k
5

I where r is the distance from the center of the disk to the surface element

dA wh,, dA is given by

dA = rdrdm 3.25

The angle e must now be determined for use in C. given by Equation 3.20
and S. given by Equation 3.21. Since

[ n U sin e 3.26
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si - -n

S U .n = sin - F CO 3.27

Using Equation 3.24, e becomes
'i' I r"U sin @s

U fO -

= sin L3.28

(U + r 2 - 2U rO cos g cos e

Define a non-dimensional quantity, Kd, as the ratio of the peripheral speed

of the disk to the free stream velocity, U . That is, let

Kd = rd 3.29

where rd is the radius of the disk. Define, also, a non-dimensional variable

r as the ratio of the variable r to rd. That is, let

r - 3.30

rd

Using Equations 3.29 and 3.30 in Equation 3.28, e becomes
[ sin 9s

sinsin 3.31

L(l+Kd 2 W) 2- 2Kdr Cos Cos ~

Substituting Equations 3.24, 3.25, and 3.30 into Equation 3.19 for dF and

taking components along the x,y,z axis, the following results are obtained

d(drag) = Dd dr' d r'(i-C - K (r')2 cos s Cos (l-C

+ r' sin 2  s (C + S.)] 3.32

d(lift ) Dd dr' d [Kd(r') 3 CIS sin 0~ (I-C)

- r' sin ccs (C. + Sj) 3.33
s a
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d(lift) Dd dr d EKd(r 2 sin g (I-C3)].'1

where

2 2d pU 2 sin es rd

7 cos e.
C. - C " Jc l

2 j j Cos e

sin e.
S. = a.Vl-cf. -i

J r jI j sin~
I .- and where 9 is defincd by Equation 3.31

Similarly, the components of torque are obtained, given by

d(Ti  D rd dr' dg [-(r') sin g sin 9s (+S)] 3.35

: .I ) = d r d [(r')c

d(T. ) = D rd d ' (r')2 s FCos ] 3.36

where Dd, C., S., and 0 are as defined above.

Equations 3.31 through 3.37 are the basic equations expressing the

force and torque on a spinning or non-spinning disk, in chapter 4, these

equations will be evaluated for specific cases of the gas-surfa, interaction

model.

3.2.3. Spinning Cylinder at Angles of Attack

The orientation of the spinning cylinder with respect to the x,y,z

and xs ,ys ,z coordinate systems is shown in Figure 3.6. The cylinder of
" I

length L is spinning about the axis of the cylinder. The center of the

coordinate systeal is placed at the geometric center of the cylinder. The

I
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following vectors are defined

V-4=: U = U cos esj s - U sin s k5

-4 3.3e

cy s cysT R =r cycos i + r csin s +2Ik

n cos i + sin J
s 5

where r is the radius of the cylinder and I is the variable of integra-

tion along the axis of the cylinder. The element of surface dA is given

by

dA r d d 3.39cyK :From Equations 3.38, the angle e is found to be

-cos e sin
sin 3.40

(-.-K2  - 2K cos cos
cy cy

where the non-dimensional spin-rate parameter K is defined as__ , cy

r
K e -y 3.41

j~ cy UC

The variable of integration A appears only in Equation 3.39 above.

The equations for the cylinder can then immediately be integrated with

re-spect to 2 from to + ! The variable g still remains, however.

Lettingii 2D pU r L cos 8,cy O cy

The resulting basi.c equations for the cylinder are found to be

II
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d(drag) = D dg [sin g (1-C + K cos e sin g cos (-C)
cy s

- cos2es sin 3 (C. + Si)] 3.42

d(lif)= D d sin 8s cos g sin g (1-Co)

Cos s sin essin3g (Cj + S.)] 3.43

d(lift)x =D cy dg I-K cy sn2 (

Cos cos g sin2 g + S) 3.44

d(T. ) = D r d9 Vsin 9 sin 2  (l-C)1 3.45
?.f is cy y L 1 1 _

d(T. ) = D r d [sin- s cos sin (I - c.) 3.46
Ssin cy g si (

is rr Cy s)

d(Tks) = Dcy rcy dg[ cy - C

+ cos s cos g sin t(1C 3.47

where C and S. are as defined previously.

The surface of the cylinder exposed to the flow is from T =  to

217 at all angles of attack except 93 = * and-1 where none of the surface
2 2~

is in the flow. Equations 3.42 - 3.47 are the basic expressions for force

and torque on a spinning or non-spinning cylinder. These equations will be

evaluated in chapter 4 for specific cases of the reflection model.

3.2..4. Spinning Cone at Angles of Attack

A cone having half angle 6, height Hc , and base radius r., is

shown oriented in the x,y,z and x ,Y coordinate systems in Figure 3.7.

The center of the coordinate system is at the center of the base of the

K
L
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cone. The cpne is spinning about the axis of the cone. The following vec-

tors are defined

U = U cos i is " U sin 0 k

-'4

k+,s

R f(A) cos is+ f(Y) sin j + k

-4

n = cos cos 8 i + sin cos 6 j + sin 6 k 3.48

where I is the variable of integration along the axis of the cone and f(A)

'U is the radial distance of the surface dA from the axis of the cone. The

distance f(A) is given by
~H -A

c H r
cH

3The element of surface dA is given by
dA = f d§ dI

cos 6

The angle e is found, using Equation 3.48, to be given by

sin e sin 6 - cos e sin cos 6sin 8 = ss3.49
(I + (')K 2  _ 2' K cos cos eS )

where K is the non-dimensional spin rate pvra-meter defined as

r
cK = -[]c U

and A' is a Pon-dimensional variable defied as
,A'= l_ -_

HcI17fi
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Letting

r2
2 c

D c sin 6

The basic equations for the cone become

d(drag) = Dc  dY I - c X COS Cos 0( 3C.)

3,-X z (C + S.) 3.50

d(lift) = D d d2' [K c ())2 cos sinC

7S 
(I

2,
-x" 2 (sin 6 cos 9

+ sin 9 cos 6 sin es)(C j + S.)] 3.51

d(lift)x = C dg dl' .-XKc a 2 s (n - C.)

c2
-' 2 2' ]C <

-x cos cos 8 (Cj + Si) 3.52

d(Ti )'= D r d dl' Fsin sin g -C
c c LX s

71 + X (1-2') cot 8 cos e(-C)

_ XK (2,)2 (I-2') cot 6 cos 9 (l-C.)

+ X2 -(A,)2 sin 6 sin
+ c'(1-2') cot 6 sin cos 68(C. + S 3.53

Iii d(T. ) = D cr d dA' L-XK (2') 2(i-') cot 6 sin (I-Cj)

-x(£ .) 2 sin 9 cos (1-C)

-x2 2' 2 ' cot 6 cos cos 6 (C. + S.)

+x2) sin 6 cos (Cj + S4 ) T.54

4
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d) -k D cos as cos ) (1-C 3.55

where

:1 f X = cos 9 sin g cos 6 - sin 8 sin 6 3.56Ss s

J The surface of the cone exposed to the flow is a function of the

angles s and 8. At s =-U, for examplE, the entire conical surface is ex-ss 2'

posed to the flow (g = 0 - 2rr). In fact, for all values of s between 2 and

- 5, the entire conical surface is exposed to the flow. At angles of 8s

between (- 2+ ), decreasing amounts of the conical surface is exposed to

the flow. The shadow boundary for the flow on the surface is always a

straight line and can be found in terms of the variable, g, by finding where

IMP U'n = 0. Define the angle, , to be the. value of g at the shadow boundary.

Then,

= sin (tan 8  tan 6) 3.57

"Fom Equation 3.57, the following three categories of surface exposure are

defined.

Case I: tan s tan 6

Entire conital surface ( 0-. 27-) is exposed to the

flow.

- Case II: -i <'tan 8 tan 6<1

' Only part of the conical surface

[ = (r- ) (2r +)

is exposed to the flow.

[ Case III: tan s tan 6 <-I
14' 5
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1. INo part of the conical surface is exposed to the Elow.

tI (The base of the cone having not been included in the

basic equations for the cone).

i l 3.2.5. Spinning Sphere at Angles of Attack

A sphere of radius r is shown oriented with respect to the x,y,z

and xs,YZ coordinate systems in Figure 3.8. The spin axis is along a

diameter of the sphere at an angle (-e s) with respect to the free stream

velocity. Cylindrical coordinates ere used to describe the position of the

surface element dA. With e denoting the variable length along the spin axis,

dA is given by

dA = r dg dA

IThe following vectors are defined
U = U cos e j - U sin e k

R r(A) cos i + r(A) sin s + jk s  3.58cos i s

n= cos i + sin gj + -k
r s r s r s

I l wnere r(j) is the radial distance frcm the spin axis at t'e point A to the

element of surface dA

i (1) = r 02 3..59

The angle e is obtained from Equations 3.58 as

A' sin-, P 2 sin g cos s

I sine = 2 2 Ss 3.60
(i+2 K - 2K I cos cos

SD S 5 SI _ __ __ __ _ _
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~I
where K is t'-e non-dlimensional spin-rate parameter defined as

S

KS
S U

and A' is a non-dimensional variable of integration defined as

r
s

and

Letting

2  2D p U r
s CO s

£[ The basic equation for the sphere becomes

d(drag) = D d§ d2' [xs (-I + K 2 cos, cos 0s)(l-C.)

3
- xs (C +Sj)) 3.61

d(lift)= D d d2' CXsks2 s cos g sin 9 (l-r.)

xs (' cos 6 +O. sin E: z( , ) (C+S 3.62

d(lift)D d de' [s k 2 sin g (I-C.)

x s 5 S

- 2 cos (C +S )] 3.63

d(Ti ) D r d~ dt' [ sin 0 sin
. s 5

- K A'e cos + ' cos 0 1, (I-Cj) 3.64
I s s s
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d(T. ) = D r dg d [-A sin e cos - K i'.e sin ]'. (1-C.) 3.65
s s S S s S .5Is

Sd(T k  Ds rs d§ d9' [K s Zs _e sCos Cos 0s] i (1-C) 3.66

where

=Xs
=  cos e sing - 1' sin 9

The shadow line of the flow on the surface of the sphere is a

curve in the 2' - plane. At a constant ', the shadow limits in terms of

g can be found by finding where U.n = 0. Define the angle s to be the value

of § at the shadow boundary. Then, s is given bys

Ps = sin an )(t ss
5

For arbitrary values of 0 , the shadow determines three regions of exposure

along the spin axis. Referring to Figure 3.9

Region I: tan s e > I

In this region the surface from g = 0 to g = 2 is exposed to the

flow

Region II:. -I < tan e <I

In this region the shadow limits are, at any point, 2', from

= - S't° g = 2. + s

Region III: tan s 21 < -l

s I

This region of the sphere~is not exposed to the flow.

4

A __ _ __ _ _
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3.3. Applications

The equations which have been obtained for the four basic shapes

of the disk, cylinder, cone, and sphere are applicable to a wide variety ofIproblems. In the next chapters these equations will be used to evaluate the

effects of spin rate and the gas surface interaction on the dynamic pro-

perties of these shapes in free molecular flow. The application of the

equations to other problems is discussed as follows.

Many satellite shapes can be simulated by a combination of the

four basic shapes of the disk, cylinder', cone, and sphere. If the satellite

is of convex shape, the basic equations developed in this chapter can be

V, applied dire-tly. Since the equations are in differential form, they are

equally applicable to bodies composed of segments of the sphere (such as

spherical caps), cone frustrums and segments of the cylinder and disk.

Surface properties affect the character of the gas-surface inter-

action. Many satellites ace composed of surfaces which have widely differing

surface properties such as solar cells versus painted surfaces and varying

surface temperature or roughness. ProLiems of this type can be studied

using the equations developed in this chapter by assigning different values

to the parameters of 'he gas-surface interaztion model for a specific region

[3 of the surface.

1:.

-',

" [
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4. AERODYNAMIC PROPERTIES OF SELECTED SHAPES

In this chapter aerodynamic properties of selected shapes are

evaluated from the expressions developed in chapter 3. For the special case

of the Maxwell model, results are obtained to illusLrate the effects of spin

- on the aerodynamic properties of the four basic shapes of disk, cylinder,

cone, and sphere. Analytical results are also obtained in terms of the

generalized model parameters for drag of the four body shapes with zero spin.

-In general, the aerodynamic properties must be evaluated by using

numerical methods. The numerical techniques employed in this study are out-

lined in this chapter and results obtained for various values of the gen-

eralized model parameters are presented. These results are compared with

I . those obtained for the special case of the Maxwell model.

In the next chapter, the results obtained for the cone and disk

are applied to the problem of a satellite in near earth orbir.

4.1. Special Case of the Maxwell Model

-: The reduction of the generalized gas-surface interaction model

parameters to the parameters of the Maxwell model was demonstrated in

section 2.3.1. Those results can be applied to determining in terms of

the Maxwell model parameters the quantities C. and S. which appear in the

basic aerodynamic equations developed in chapter 3. For specular reflec-

- tion,

Cos e.
C. j C j cos e d

sin e. 4.1

S. . i-c. = I - d
j j sin d

I *jI -
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For diffuse reflection,

I: C =0

=T sin e

E Combining diffuse and specuiar reflection, the values of C. and S. in terms

of the parameters of the Maxwell nodel become

(C) d

m
L. 2

S(Sj) = i d + a"1l--T i&
dm sinI

In the basic aerodynamic equations, the t'llowng functions of C. and S.3 3

occur repeatedly. In terms of the Maxwo.l model parometers, these func:ions

E are given as

I - (C) d
m

[ (C.)m + (S) = 2 (l-d) + % 1 'T i 4.3

jm md i T 0i

+ (S.) =2 - asin

m

The equations for the disk, cylinder and cooe could be integrated

analytically except for the terms containing (sin e)' ihich appear in Equa-

E tions 4.3.

The angle of incidence of the flow, , is a function of the spin-

L-rate and position of the surface element dA as discussed in chapter 3. For

the four body shapes studies, the expressions found in chapter 3 for sin e

Ii for each shape are all of the following form

[E
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sin e A l + d- 2Kd cos cos e 4.4

si where Table 4.1 gives the values for A, K, and d for the four shapes studied

in chapter 3. The terms K and d are non-dimensional where d represents,

WO
except of the case of the cylinder, a variable of integration which may have

a maximum value of one or less. The spin rate parameter K is the ratio of

the maximum peripheral velocity of the body to the free stream velozity U .

For satellite applications, K is always less than one as can be determined

from the values for K given in Table 4.2 for a number of past satellites.

Since K < I and d < I for satellite applications,

2 2 2(Kd - 2Kd cos 6 cos ) < 1 4.5s

and (sin a) can be expanded in a binomial series as an approximation to

the dependence of 9 on spin rate and surface position. The result of the

expansion is

-2 1 2 2e cos2
(sin [I - Kd cos O cos + (Kd) (1- cos s

+ (K) 3 ] 4.6

where terms of order (Kd) 3 and higher are not to be retained. Substitut-

* "ing Eqviation 4.6 into Equation 4.2 for C. and S. of the Maxwell model, the

J 3

following r,,5ults are obtained

(C 1) d" m

(S.) - d a d l- LN AIi-Kd cos a cos 4.7J m

2 2 2

A + (Kd)2 (1-cos
2 es cos 2

Equations 4.7 will now be substituted into the basic aerodynamics equations

77
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tTable 4.1.

Definitions of A, K, and d obtained from theI: results of chapter 3

Body
<1 Shape A K d

- r 

vs K d r

disk sin Kd r

E cylinder cose sin K -
s cy 1J0,

rc) 2
cone sin e sin 8 - cos e sin cos 6 K - = H2--

s c UO Hc

sphere A' sin e - sin cos e K =- =- ) 2
Co r

Table 4.2.

Values of the spin rate parameter, K, for
a number of past satellites

20 20
Satellite Orbit Altitude Spin rate K

perigee - apogee (mi) (rpm) (10-3

ESRO 2A 215 - 680 35 .350 - .519

ESRO 2B 205 - 677 35 .151 - .223
IDSCS 19-26 20,940 - 21,068 150 2.29

-ERS 16 110- 2,260 10 .0197 - .0301

ERS 18 and OV5-1 5,357 - 69,316 10 .0306 - .238
OSO 3 336 - 354 30 .230
Explorer 32 173 - 1,629 30 .169 - .227

ESSA 1 432 - 521 10 .074 - .079

t. ESSA 2 843 - 885 10.9 .084 - .086
ESSA 4 822 - 894 10 .078
ESSA 6 876 - 925 10 .078

+[
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2 obtained in chapter 3. For the disk, cylinder, and cone, analytical results

I can be obtained. The equations of chapter ^ expressing force and torque on

a spinning sphere are not integrable in closed form when Equations 4.7 are

employed; however, the torque on a spinning sphere has been obtained analyt-

IN ically in terms of the Maxwell model parameters by using the teclranques

employed in Reference 9, The results fro Rtference 9 for the sphere will

i be given along with tbh results for drag of a non-spinning sphere which can

be btiued analytically from the equations given in chapter 3.

The results will be presented in terms of coefficients of drag,

lift, and torque, which are defined as follows.

Drag coefficient = Drag
D 3p 2A

~Lift
Lift coefficient = C = L2i

kpU 2-

Torque coefficient = C Torque
V - 2- -

"I pUA r

where A is a reference area associated with the particular shape being..

studied. In addition, a reference radius r is introduced in the expressions

I~ for coefficients of torque.

4,1,l, Spinning Disk Properties in Terms of The Maxwell Model Parameters

II Substituting Equations 4.7 for the Maxwell model into Equations

3.32 through 3.37 for the spinning disk at angles of attack and integrating

over r and (0 to I for r' and 0 to 2Tr for F) the following results are
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I - 2-
obtained for the case of the spinning disk, (A = Tr rd , r = rd))

I 2 2sin8 (2 sin 2 e + d (1- 2 sin e )

sin [ + d ( + sin42  4.8
+3s 8 5 (+ sin

C = 2 sin (-2 sin s sin
5. 2I Kd2

I - d /-T cos es ! +-- - (I + sin 2 0s)]) 4.9

CL =0 4.10
x

C =0 4.11

s

C . (a - ff v1 -4 K d  sin 9 s cos 0 )/2 4.12

i A spinning disk is found to have drag and (lift) z coefficients

[ which are higher than a disk with zero spin rate. This increase in drag is

proportional to Kd which would be small for satellites.
Besides the expected slowdown torque, a spin induced precession

,.i[torque about the Ysai is obtained which is directly proportioned to Kd .

The precession torque arises because diffusely reflected modules are re-

flected at a velocity relative to the surface which is higher on one halfof the disk when the disk has angles of attack other than and zero.

41.2 Spinning Cylinder Properties in Terms of Maxwell Model Parameters

The coefficients of drag, lift and torque for the spinning

toqeaotteys-xsi bandwihi ietypootoe oKd
Th rcsintru rssbcue ifsl elce oue r e
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cylinder at angles of attack are obtained by first substituting Equations

I 4.7 for the Maxvell model into Equation 3.42 through 3.47 for the cylinder.

These equations are then integrated over the surface area exposed to the flow
with respect to from ir to 2

TT. Letting A =2 r Land r = r the coeffi-
g cy cy

I cient of drag, lift, and torque for the spinning LVlinder at ingles of attack

are found to be

CD = cos s + d 3 (3/4 - cos 0S)s3 s d3 34s

K 22
co+9~ + -cy- (4 - cos 6)J 4.14

K2 ad/-Tcses 1 8S
"" Co ,8o sin 0 - ad 8 cos 0 sin 8s

- ', CL =cos '3 s3cos 2: s s

z 2

~"+ 21!sn8 s [ + cy (4 -cosa&la si s] 4.15

C =cos 9 K [-Ila + 2 I-a coss 4.16

-7 :i : d  sin d Cos 9 4.17

C

Ss

C 0os 4.19

s
4 4C -2 K a se41

Tk cy d co s
k

KThe results obtained for the cylinder exhibit the same influence of

spin rate on drag, lift and slowdown torque as those of the disk. Unlike

I the spinning disk, the spinning cylinder experiences a spin induced lift in

the negative x direction which is directly proportional to the spin rate•

parameter Kcy. This spin induced lateral force on the cylinder is analogous



r

73

to a similar effect called the Magnus force which occurs on spinning cyl-

inders in continuous flow (see Reference 21), In free molecular flcw, the

lateral force is found, however, to be in the direction opposite that of

the analogous Magnus force.

The finite value of torque perpendicular to the spin axis obtained

in Equation 4.17 is due entirely to geometry and is not spin induced as was

found for the disk. The center of the surface area exposed to the flow is

not at the geometric center of the cylinder but is a function of the angle

of attack. If end contributions were included in the development of equa-

ttions, C would be zero.LI T..3s

4.1.3. Spinning Cone Properties in Terms of Maxwell Model Parameters

The coef" :ients of drag, lift, and torque for the spinning cone

at angles of attac . obtained by substituting Equations 4.7 for thp Max-

[well model into Equations 3.30 through 3.56 for the cone. These equations

can be integrated in general form by incorporating the angle 0 and integrat-

~ing over the surface area exposed to the flow with respect to 2'from 0 to 1

- 2 a =
and § from (T - 8) to (2Tr + ). Letting A = r and r r the coefficient

flu of drag, lift, and torque for the spinning cone at an61es of attack are found

to be

Cos e cot 6 cos + '- sin e R
D 1R2 + d l os IT [ s 2

4

K 2Vdl- T [R 3 + S (R3 R8 Cos 2s) j 4.20
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= - "(2R si 6 cos e + 2R cot 6 sin e
L  d 3 s I s

z
+ Cl-a T IR94 cos 9 + R5 cot 6 sin 8

K 2
+--- {R4 cos 9 + R cos 6 sin9

s 5 S.

- Cos 2s(R + R 4.21

-K a (cos a cot 6 r++2Bsin2+ cos
x

+ 2 1-, :s s cot 6 4.22

2 R13 sin 2

T s 14 sin 2  8 o
l CTn 0 Co:" s R: cos 1 sin 0 cot 6 sin 20

i 2 co2 6 o2 os -2 3 i28

-cs s 1 in26 4.2

K2

! I c~ 2 R ) ( 1-3 sift 42

' ! = - --Kc d(cOt2  rr2B - sin28 - o sn8BsST. 6 cos 9 +- o cos s
2 2

2Rco91-4 sin26 -

sin 6

TCT = - KC09CtTK c d (_11 os 2ct6co 8+ r i s 4.25'

s2I1 di1 -- T R 5used

The fun.tions R, 2, R8 sein Equations 4.20 through 4.25

11
K)
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are defined as follows.
S2 2 2 si2

RCos 2 cos 6 cos (sin + 2)

2 sin 2  s sin 2 C cos

sn0scos 9 sin 6 cos 8 T+T- i2

R= Co 3 cos 2 6 cot 6 cos (sin 2  + 2)2< 3TT c s
3 2 r2E

+ 2 sin 3 0 sin 8

2 2. rr+2$ - sin2$
+ 3 sin 6s cos 6s cos 8

2 2

+12 sin e cos e sin 8 cos 6 cos, r s s

R =Cos cos & cot r 2  - s6in2B
- 3 s 2Tr

+ sin s cos 6 cos 8 cos

+ sin 2 9 sin 8n+28

R = 8 +26

R4  cos cos 6 cos - sin 6 sin 6 -[ T S s IT

R = cos e Cos 8 r,+2g - sin20 + 2 sin e sin 8 cos5 ,2T TT s

R = Cos 8 Cos - 2n++8 - sin48 + L sin s sin 6 cos 3

6 cs s 8- 1617 3Tn s

S=Cos 6 Cos 3 8 - sin e sin 6 Tr+2 + sin28R7 =-3- cos s 's 27 3TT s 2

2 cot 8 cos 2n+48 - sin 40
R8 = Cos c os 16

4 3
+ - sin 6s cos V cos 6 cos

r + sin 2  sin sin2
Ls 217
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In Equations 4.20 through 4.25, the value of the angle 0 depends

upon the angles e5 and 6 in accordance with the three cases of surface ex-

posure defined in the last chapter for the cone. Using those definitions

the following ranges of $ are defined.

Case I: tan e tan 6 > I
s

Case II: -1 < tan e tan 6 < I

= sin (tan e tan 6) 4.26s

Case III: tan e tan 6< - I

For case III, the coefficients of drag, lift, and torque all become zero

because the conical surface is shaded from the flow.

The cone equations are found to be similar in form to those ob-

tained for the cylinder and disk. As in the case of the spinning cylindeL,

a spin induced laterat force is experienced by the spinning cone at angles

of attack. The spin induced lateral force is found to be directly propor-

tional to the spin rate parameter K .c

The cone is found to also experience a spin induced torque, per-

pendicular to the spin-axis, about the ys axis of the cone. The component

of torque about the x axis is not spin induced but is instead due to theC

moment of the drag and (lift) forces about the center of the coordinate

systems.

4.1.4. Spinning Sphere Properties i, Teims of the Maxwell Model Parameters

The sphere equations given in the last chapter must in general be

)0
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evaluated by numerical techniques for all cases of the gas-surface inter-

, action model. The equations given in chapter 3 are particularly useful

when applied to shapes such as spifning spheridal caps, and hemispheres.

For the special case of a complete sphere, analytical solutions for the

[torque components are given in Reference 9. The results of Reference 9

will be given here and are the same c. would be obtained by numerically

solving Equations 3.61 tbrough 3.66.

2 -
Lett.ng A = 1- r and r = r , the coefficients of torque on the

bphere are as .obtained in Reference 9,

CT% = 0 4.27

I~~ ~ co s/242
CT. = (K a d sines cos

is

STk = Ks ad (2 + cos 2 0)/2 4.29

The coefficient of drag for a non-spinning sphere, in terms of the Max-

well model parameters, can be obtained analytically from the equations

given in chapter 3. Letting A TT r2 ,

C 2+T; K 0 4.30

The coefficients of drag and lift for the spinning sphere must be obtained

by numerical integration techniques and are therefore not available in

.IJ analytic form.

if 4.2. Solutions in Terms of the Generalized Model Parameters

'4.2.1. Analytical Results (Zero Spin)
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For the special case of zero spin rate, the equations of chapter 3

TAW can be integrated in .losed form for certain cases of angle of attack.

These results are given in the following sections.

4.2.1.1. Drag and Lift of Flat Plate at Angles of Attack

The angle 6 for the disk (Equation 3.31) becomes 6 for the case
s

when K 0. Therefore, co (I-P'

j j cos

and
__ sin P. + (I-P.) 9S.= a.j l-c j

-b Sj j jsin 4.32s

-b which are independent of r and .

Substituting Equations 4.31 and 4.32 into Equations 3.32 through

3.31 fur the disk with Kd = 0, the following results are obtained after

intEgration over r' from 0 to I and § from 0 to 2T. Letting A Tr rd

CD 2sin - 2ol-ci. sin e cos [ Pj + ( 2 -P) s  4.33

D s 3 J L2 j si

-2 oJ-. sin G sin ]ja 4.34

CL =CT T =Ck = 0 4.35
i k

s S s

These equati.ns can be shown to reduce to Equations 4.8 through 4.13 ob-

tained for the disk in terms of the Maxwell model parameters by letting

Kd = 0 and substituting the appropriate terms for a., aj, and P.. Since

ithe repeated subscripts imply the summation over the J beam components,

Equation 4.34 for example could be writtenI
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CL = -2 sir, 9s E fo. Al-ci sin (e. + es)}
z J =l j 5

where Z a. = a .

In Equations 4.33 and 4.34, the first approximation to ej has been

utilizied.

4.2.1.2 Dr of Cylinder with Axis Perpendicular to Flow

In the cylinder equations of chapter 3, the angle e, given by

Equations 3.40, becomes if K = 0,
cy

sin e = - cos es sin 4.36

ZF For tie case when the axis of the cylinder is perpendicular to the flow

(es  0), sin e becomes

sin e = - si.

i- For between 1T and 3T/2.

cos e =-cos

Therefore, C. and S. become, for between r, and 31T/2,

__ Cos -L P~i +  +"g)J%- T

C. -j 0  l-U cos 4.37
SSi 

= Lu::sin P .+ (1-P.:::c 4.38

Sj C2 gin/

The coefficient of drag for this special case of the cylinder is found by

I taking twice the value obtained by integrating over g from n to 3/2.
Letting A 2 r L, the drag coefficient of a cylinder is given by

I cy

Cos T P.

CD = 2 + 2a jl-j (I )0--? A P 1, 3 4,39

_.Li
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for P. = i, the expression in the bracket should be . A value of P. 3 can
3 4'j

not be meaningfully applied to the cylinder problem unless a discontinuous
'3

linear relationship is chosen for the angle-of-reflection law. Equation 4.39

is valid only for values of P. between 0 and 2. Equation 4.39 can be shown

to reduce to Equation 4.14 for the Maxwell model by substituting the appro-

priate values for a., Q'., and P.. The other coefficients are all zero forJ J J

this special case of a non-spinning cylinder at 9 = 0.

4.2.1.3. Drag of Cone with Axis Parallel to Flow

For a non-spinning cone, K = 0, the expression for sin 0 reduces to
c

sin e = sin e sin 6 - cos es sin g cos 6

SIf es =- the axis of the cone is parallel to the flow and the above equa-

- tion for sin e reduces to

* sin e sin e sin 6 = sin 6

or

9=6

I, Therefore, 0 is found to be independent of the variables of integration Y'

-. and 9. For s  T the angle 0 is equal to a constant of 1. Since the term X

in Equation 3.50 is also independent of A' and , Equations 3.50 can be inte-

grated in closed form over A' from 0 to I and § from 0 to 2T1. Letting
"* 2

A = r r c the following equation for the coefficient of drag of the cone is

obtained,

CD= 2 - 2 a~-.CosFiiP. + (2-P.)6 4.40
D3 3 L2 J 3

The cone equation is fourd to have a form similar to that obtained for the

flat plate at angle of attack.

-----------
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4.2.1.4. Sphere Drag

The drag coefficient of a non-spinning sphere can be obtained from

Equation 3.6.1 by letting K = 0 and 8 = Then, sin e becomes_ s s 2

sin e =

the next step is to now change variables of integration so that

sin v ='

or i= @

Substituting this into the expressions for C. and S. and then integrating

Equation 3.61 over g from 0 to 2n and i from 0 to R and letting A = 'r 2
2 s

the following result is obtained

4(_1-cos P)

CD 2 + a 1-j P(4-Pj) '; Pj #0, 4 4.41

where for P. = 0 the bracketed term should be zero. As in the results
J

obtained for the cylinder, Equation 4.41 for the sphere drag is valid only

for values of P. between 0 and 2. A value of P. of 4 could only occur if a.3 J

discontinuous linear relationship were chosen for the angle-of-reflection

law and in that case the equatio.a obtained would not be the same as Equa-

tion 4.41.

4.2.2. Numerical Methods

For cases othet than those given in previous sections, the ex-

pressions deriveA in chapter 3 for aerodynamic prcpertieq contain integrals

which must be evaluated numerically. In choosing a numerical technique,

practical consideration must be given to the computation time required to

1!Ic_ _ _ _
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obtain results of suitable accuracy which in turn is dependent upon the com-

puter being used to perform the computations. The numerical evaluation of

the expressions of chapter 3 were made on a Control Data 1604 computer with

an on-line video display system from which graphical results were obtained.

The numerical techniques employed are described in the following.

4.2.2.1. Single Variable of Integration

Results requiring integration over one variable, such as those of

the cylinder, were obtained by using the Gaussian integration formula over

and arbitrary interval which is given by

b n=b- a Ew ~
'a f(y) dy 2 E Wi f(yTI i=l

where

(b-a b+a
yi 2 ) ix.+ 2

Y) "]The weights, w., and abscissans, xi , were obtained from Reference 22, The

twenty point formula, n = 20, was used in all cases. From tests, it was

found that at least five place accuracy was obtained by using this formula.

* 4.2.2.2. Double Integration

Results for the disk and cone require integration over two vari-

ables. For these cases, the region of integration was divided into squares

of equal dimensions, h. (This is possible for the disk and cone since the

region of integration is a]ways rectangular.) For each square, a nine point

idouble integration formula was used given by9

1h f f(x,y) dxdy E w f(xiYi) + R

4h 2 fR
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From Reference 22, the abscissas (xiy i) and weights wi are given as

(xiY i) w.

(0,0) 16/81

(0, ± 3fb) 10/81

(+ j13T, 0) 10/81

1,; where R = 0(h 6).

I Tests showed that results of at least 5 place accuracy could be

obtained in using this formula by dividing the region of integration into

[about 100 squares.
The above double integration formula was not applied to the

1sphere because the region of integration defined by the shadow boundary
Fin the sphere is curved and cannot in general be divided accurately into

squares. Numerical resul-s for the sphere were not obtained in this study.

4.2.2.3. Graphical Display of Results

In order to evaluate the expressions given in Chapter 3 at various

values of the quanities P, 8, K and, for the cone, 6, a numerical inte-

gration must be performed for each case separately. Graphical results of

the variation in an aerodynamic property as a functio. of these quantitiec

were obtained by evaluating the equations at six or more separate values of

the quantity of interest and then using a six point Lagrange interpolation

formula to plot the curve. For the case of the cylinder, for example, 288

-IL
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Sseparate numerical integrations were evaluated and stored on magnetic tape

corresponding to six values for each of the quantities P. and 6 and eight1 s

values of K . Graphs of any of the aerodynamic properties as a function

U of any of the three quantities can be generated by obtaining the appropriate

Ii :alues from storage and using the interpolation formula to obtain values

along the curve. Graphs are displayed on a T.V. screen from which pictures

!' j may be obtained. Numerical results are also obtained.

I4,3. Discussion of Results

The analytical solutions obtained in this chapter illustrate that

the gas-surface interaction strongly influences the aerodynamic properties

of both non-spinning and spinning bodies. For non-spinning bodies, the

Tdrag coefficient is the principal aerodynamic property of interest. Fig-

Iures 4.1 through 4.8 are plots of some of the analytical results obtained

" on drag coefficient as a function of the gas surface interaction.

Figures 4.1 and 4.2 are plots of CD given in Equations 4.8 and

4.33 for the flat plate versus angle of attack for various values of the

parameter d of the Maxwell model and of P. of the generalized model re-

spectfully. The parameters T and o. were set equal to .5 and a. = i, and

I the spin rate parameter Kd is zero. These two plots illustrate the effect

of the gas-surface interaction on determining aerodynamic properties. The

effect of backscatter reflections is illustrPted in Figure 4.2 by the curves

for values of P. between I and 2 and is seen to increase the drag coefficientt
values at all angles of attack.

Figures 4.3 and 4.4 are plots of CD given in Equations 4.14 and

IID
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Figure 4.1. Drag coefficiert of a non-spinning disk at angles of
attack varying the Maxwell model parameter d*
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Figure 4.3. Drag coefficient of a non-spinning cylinder, with axis of
cylinder perpendicular to the flow, as a function of the

L Maxwell model parameters.
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Figure 4.5. Drag coefficient of a non-spinning cone, with axis of
the cone parallel to the flow, as a function of the

L Maxwell model parameters.
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parallel to the flow, as a function of the generalized

model parameters.
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4.39 for the non-spinning cylinder (K cy= 0) with the axis of the cylinder

perpendicular to the flow. Figure 4.3 gives the drag coefficient, using

the Maxwell model, plotted versus aT for various values of ad' Figure 4.4

Kis a plot of C versus c. for various values of P. which are the parameters
D J J

of the generalized model. For values of P. between zero and one, the range

in drag coefficient is the same for both models. For values of P. greater

than one, however, the generalized model gives higher values of CD than does

the Maxwell model.

§ L Figures 4.5 and 4.6 are plots of CD given in Equations 4.20 and

4.40 for the non-spinning cone (K = 0) with the axis of the ccne parallel

to tne flow. The half angle of the cone for these plots if 15 . Figure

4.5 gives the drag coefficient versus 0T foi various va'ues of ad which are

the parameters of the Maxwell model. Figure 4.6 is a plot, also of the

drag coefficient, versus a. for various values of P. which are the para-

meters of the generalized model. In Figure 4.6, the effect of backscatter

and over-specular reflections are both illustrated. The curve for P. = -.2JI

shows that over-specular reflections give values of CD less than 2. In

general, over-specular reflections decrease the drag coefficient while back-

scatter increases the drag coefficient.

Figures 4.7 and 4.8 are plots of CD given in Equations 4.30 and

4.41 for the non-spinning sphere. Unlik, the previous plots, the two plots

of sphere drag coefficients are very simil.ar for the two cases of gas-surface

interaction models. Figure 4.8 illustrates again that backscatter causes

increased values of drag coefficient. The results shown in Figure 4.7 us-

23F ing the Maxwell model are different than results given by Cook which are
:f

- -.----- --- -- - - - 4
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similar to those given in Figure 4.7 except that the magnitudes of drag

J coefficients are different in the two plots for the same values of ad and

a!T. For example, at ad = I and a,, = 0, Reference 23 gives a value of CD

for the sphere of about 2.89. Figure 4.7 (Equatiou 4.30) gives, however,

-" a value of 10/3 for CD of the sphere at a d = I and a T = 0. The difference

between the two results is because the results in Reference 23 were ob-

tained from Reference 15 in which Schemberg obtained the equation of CD for

the Maxwell model for a certain choice of parameters in his model, In

L reducing the Schamberg model to the Maxwell case, the distribution of

velocities proposed by Schamberg were still retained which, as discussed

in chapter 2, introduces a factor of 2/3 in the coefficient of jI- T.

The effects of spin on the aerodynamic properties is well

illustrated, for the Maxwell model, by the analytical results given in

section 4.1 of this chapter. In general, the results show, for the case

of the Maxwell model

1. As the spin rate increases, drag and (lift) increases.
z

The increase is proportional to K2

2. A spin induced lift force in the lateral direction,

(lift)x,occurs for elongated bodies at angles of attack.

The lateral force is directly proportional to the spin

rate parameter, K.

3. Spin induced torques perpendicular to the spin axis are

experienced by all the shapes at angles of attack, except

the cylinder.

;--
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4. The slowdown. torque on a spinning body is directly

proportional to K. Also, for the four shapes studied,

the slowdown torque is uirectly proportional to a d

and independent of aT"

The effects of spin described above were also found, in general,

for the case of the generalized model. The results for the case of the gen-

eralized model were obtained by numerically evaluating the expressions given

in chapter 3.

The numerical results showed that drag and (lift)z increased with

2.
increased values of K and the.increase was roughly proportional to K The

numerical results also showed that a spin-induced lateral force was experi-

I nced by the stinning cylinder and cone which is roughly proportional tb K.
'As for thecase of the Maxwell model, no lateral force was found to occur

E tor the spinning disk. The numerical results for torque perpendicular to

the spin axis also showed the same dependence on spin as indicated by the

analytical results obtained in terms of the Maxwell model parameters.

Numerical results obtained for slowdown torque on a cylinder in

terms of generalized model parameters are given in Figure 4.9. These re-

sults show that the slowdown torque is a function of both c. and P.. For
3 3

the case of the Maxwell model the slowdown torque is dependent on only

one of the model parameters, d" The numerical results for the :slowdown

torque of a spinning disk were similar to those obtained for the cylinder.

4.4. Conclusions

!,i Two conclusions are evident from the results obtained in this

41
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chapter. First, the aerodynamic properties of both non-sninning and spinning

[bodies is strongly affected by the gas surface interaction. Secondly, dif-

ferenc shapes have functionally different dependence on the gas-surface

interaction parameters of a particular model.

These two conclusions suggest that gas-surface interaction experi-

ments could be performed in which measured aerodynamic properties of various

shapes could be utilized to obtain information on the gas-surface interaction.

Since the spin induced orque and (lift) properties are also strongly de-

4pendent upon the gas-surface interaction, considerable information on the

gas-surface interaction could be obtained by making measurements of these

aerodynamic properties of spinning bodies as a function of angle of attack.

The possible experiments suggested by the results of this chapter

would be difficuLt, if not impossible, using current laboratory methods.

I I:It is, therefore, proposed that the aerodynamic properties of spinning

satellites be utilized to obtain information on the gas-surface interaction.

The high velocity, largely neutral, free molecular gas flow generated by a

satellite's motion through the atmosphere are almost ideal experimental con-

ditions for performing gas-surface interaction experiments. Tne remainder

of this study is directed toward determining the feasibi]ity of performing

the satellite experiment suggested by the results of this chapter. Toward

j this end, the aerodynamic properties of spinning satellites are obtained in

the next chapter.

•:
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5, AERODYNAMIC PR{OPERTIES OF SATELLITES

In chapter 4 the aerodynamic prop..rties of bodies in a free

molecular flow were determined for the case when the flow is stationary

with respect to the body. In this chapter the aerodynamic properties of

satellites is investigated for when the gas flow is no longer fixed in

direction.

The instantaneous aerodynamic properties of a satellite can be

found at any part in its orbit by a suitable coordinate transformation

of the equations obtained in the preceding chapter. Since measurements

of satellite aerodynamic properties are not usually made on an instanta-

-I neous basis, the average aerodynamic properties of a satellite over one

I"orbit is investigated to determine how these average properties depend
upon the gas-surface interaction.

The results of this chapter will be used in chapter 6 to study

the feasibility of performing a satellite experiment to measure gas-surface

interaction parameters. The equations and procedures developed in this

chapter can also be applied to the problem of a tumbling non-spinning

satellite. This application is illustrated by obtaining the average drag

coefficient for a tumbling non-spinning disk as a function of the parameters

of the Maxwell gas-surface interaction model.

5.1. Coordinate Transformation

In the equations developed in the preceding chapters, the aero-

dynam.ic properties of the various shapes were referred to a coordinateA
11
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system which was assumed fixed in inertial space and attached to the free

stream velocity, U . For a satellite in orbit about the earth, the coor-

dinate system attached to U rotates in inertial space as the satellite

travels in its orbit. Since the torques acting on the satellite must be

referred to a non-rotating coordinate system, a new reference frame which

is attached to the orbital plane of the satellite is chosen. For the pur-

poses of illustrating the aerodynamic properties of satellites and the

feasibility of the proposed satellite experiment, the orbit is assumed to

be circular and have fixed orientation in inertial space . The atmospheric

lo density is also assumed 
to be constant over the orbit.

The initial orientation of the satellite spin vector in the or-

bital reference frame (xoyozo), is shown in Figure 5.1. The xo-y plane

is in the ozbital plane of the satellite and z is the normal to the or-

bital plane. The free stream velocity vector, U , rotates in the xo-y °

plane at a constant rate, &, equal to the angular velocity of the satellite's

orbit. For convenience, the satellite spin vector, Q, is chosen to be

[ initially in the x-z plane at an angle X from the normal to the orbit, z .

With the above definitions, spherical trigometry can be used to

find the angle e in terms of the two angles X and ai. This expression is

s
I given by

-1
0 = sin (cos a sin X) 5.1

where e is the angle between z and 0. (The notation and definition of e

[ *In general, the orbital plane is not an inertial frame of reference since
the non-spherical distribution of the earth's mass can cause the orbital
plane of a satellite to rotate in inertial space. This effect and other
perturbing effects of the space environment are not included in this study.
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Figure 5,1. Notation and coordinate systems.
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iused in Equation 5.1 is consistent with that used in the equations of pre-

j'ceding chapters.)

5.2. Instantaneous Aerodynamic Properties of Satellite

By substituting the expression for 0, given by Equation 5.1, into

the equations of the preceding chapters, the aerodynamic properties of a

satellite can be determined at any position, L., in the orbit. For later

-A applications, it is desirable to divide the instantaneous force and torque

on the satellite into components associated with the x ,y 0z coordinate

system.

L5.2.1. Components of Force

The force acting on the satellite at any position a in the orbit

is divided into a drag component in the direction of U and two components

of lif', normal to U . For force, a coordinate system x ,'Vz is defined

which is associated with the x ,y 0z system as shown in Figure 5.2. The

Yf-axis is in the direction Of positive U and is therefore in the xo-Y o

plane. The z-axis is in the same direction as the z -axis and the x-axis

0

then completes the triad. The force on the stellite is then divided into

compcnents of (drag)tinthe direction yf;(lift)xf, which is in the plane of

Ethe orbit; and (lift)xf, which is normal to the orbital plane.

- -The components of force defined in the preceding chapters

(drag)y, (lift),, and (fift) are referred to the xfyf,zf system by per-
y z f

forming the proper coordinate transformations and using Equation 5.1.

The results are

( . ..... ..
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si isin X
F [(lift).- - (lift) '] if + [drag] jf

s s

e lift). s + (lift)z cos k f 5.2Cos 0 Cos 0

where if~jf~k are unit vectors in the xf,yf,zf system and where

Co = 1-cos 2 sin 2 X
co s

Aerodynamic drag and lift forces are known to affect the elements

of a satellite orbit. In terms of the components of force given in Equation

5.2, the principal effect of drag and (lift) (compoent of force in the if

direction and in the plane of the orbit) is to caus2 the semi-major axis of

the orbit to decay aud cause the eccentricity of the orbit to decrease to

zero (see for example References 24, 25, ane 26). The third component of

force, (lift) is normal to orbital plane in the direction kf This force
Zf

causes a torque on the orbit and has the effect of causing the orbital plane

to precess in inertial space which is analogous to a gyroscope precessing

under the action oftan external torque.

A complete study of the perturbating effects of drag and lift must

necessarily include also other perturbating forcer of the space environment

such as solar radiation pressure and gravity gradient forces. Such a study

is beyond the scope of the present work. For the purpose of the present

study, consider the torque on a circular orbit caused by the (lift) com-

ponent of force. The radius vector, r , from the center of the earth tr,

the satellite is given by

r r sin ci -r cos c j 5.3

The torque cn the orbit is then given by
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T r X (lift) k 5.4
0 0 z f

Since kf = k

T -r cos a (lit) i - r sin a (Lft) *j 5.5
00 z 0 0z j

f f

Define the coefficient of torque on-the-orbit to be given by

C p U2 r 5.6
T- o OO
0

where A is the reference area of the satellite.

Using Equations 5.5, 5.6, and the kf component of forces given

in Equation 5.2, the coefficients of torque on-the-orbit about the x and

YO axis, respectively, become

* (CT _ =-cos ot sin a sin X - cos 01 cos A 57
Tx cose L cos a .
0 0 X S Z

t ? 2
-sin a sin X sin a cos~(C~oY CL  C

T y - Cos 0 L Cos 0 L
0 0 S x s Z

5.2.2. Components of Torque Acting on Satellites

The torque acting on the satellite at any position a in its orbit

is divided into a slowdown component in the direction of C1, and two com-

ponents of torque perpendicular to Q. For satellite torque, a coordinate

system x, yo, k' is defined which is associated with the xoYoz 0 system
0 00

as shown in Figure 5.3. The z'-axis is in the direction of 6 and is there-
5

fore in the x-y plane. The x'-axis is in the same direction as the Y-axis.
0 0 SY

-. The yI-axis then completes the triad. The components of torque on the

satellite are then denoted by a slowdown component, Tk,, in the direction
S

Q); a T ,/ component of torque in the plane of the orbit and in the direction
x

75
I,

.* * -
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Figure 5.3. Coordinate system for torque components.
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x and a T.i component which is out-cf-the-pIlane of the orbit 'oy the angles is

X, fhe components of torque perpendicular to Q caus' precession which also

has components out-of-the plane and in-the-plane of the orbit.

The components of torque defined in the preceding chapters (Ti ,
s' ..

T. and T ) are referred to the x , y ' s system by performing thek s s
5

proper coordizate transformation and using Equation 5.1. The results are

Sos a cos X sin a
i cos _ Cos _j s

' i s n 3 + "cs cs k "

!~~ l -o4k ks 5.9

LI. s s c s

Licoe i coa

This equation and the equation of the previous section allow the resuib of

chapter 4 to be used to find the instantaneous aercdynamic properties of a

satellite at any point a in its orbit.

5.3. Average Aerodynamic Properties of Satellites

The average aerodynamic properties of a body is defined by the

equation

C T Cdt 5.10
0

where C represents the aerodynamic property being averaged and T' is the

* time interval over which the average is taken. As a satellite travels

through its orbit, the velocity vector U rotates in the xo-y ° nlane.

• The positioa of the velocity vector is determined by the angle a at a

given time t. For he purposes of the present study, consider the case of

1-
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a satellite in near-earth circular orbit. If the altitude loss due to the

[ action of aerodynamic drag is assumed to be small, the angular velocity of

the satellites orbit can be approximated by a constant determined by the

average radius of the orbit for a single pass about the earth. Si iarly,

an average circular velocity equal to the free stream velocity U and an

average atmospheric density p can be approximated by constants.

For a constant angular velocity &=w, Equation 5.4 can then be

changed to an integral of the angle c over 2r for one complete orbit. The

I: equation for the average aerodynamic properties of a satellite over one

complete orbit is then given by

I - 2 C do 5.11

quations 5.2, 5.7, 5.8 and 5.9 can then be substituted into Equation 5.11,

4 with the appropriate equations from the preceding chapter, to determine the

- average properties of satellites.

r I

5.3.1. Spinning Disk

In general, the evaluation of Equation 5.11 involves the use of

numerical techniques. For the case of the properties of the spinning disk

in terms of the Maxwell model parameters, however, Equation 5.11 can be

evaluated analytically. The procedure is to first substitute Equations 4.8

through 4.13 for the disk into the equations for the instantaneous aero-

dypnmic properties given by Equations 5.2, 5.7, 5.8 and 5.9. Equation 5.1

is used to replace 9s in terms of ce and X. These results are then sub-

stituted iato E&.ation 5.11 and integrated to find the average properties

'L
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over one orbit. Two cases are considered: 1) spinning disk wit one side

exposed to the flow and 2) spinning disk with both sides exposed to the

flow. The results of the first case can be applied to problems such as a

spinning cylinder or spinning cone in which the ends of the cylinder and

Ikbase of the cone can be represented a- spinning disks.

5.3.1.1. Spinning Disk with One Side Exposed to the Flow

Following the procedure outlined above, the results for the

average properter of a spinning disk with one side exposed to flow are

- 8 3 + 2 8 3
CD - sin k+d- sinX-- sin )

2 2 1 2 3 I,
+T 2 d sin X + - sin k)] 5.12

C =0 5.13
T.,

s

-C 8 djlaT Kd sin X cos X 5.14

C 2 a K sin X 5.15

'C = 8 2T ) - (l-d sin X cos X
0 o

- 2 1 3 .3
-d J/l-a K (- sin X cos X + - sin X cos X) 5.16

d T d 16 647
(C) 0 5.17

T y0

5.3.1.2. Spinning Disk with Both SidesExposed to the Flow

S- The procedure to be followed for the case of the disk with both

sides exposed to the flow is the same as above except that, when the flow
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is on the "back-side" of the disk, appropriate changes in signs must be made

on Equations 4.8 tihougb 4.13 to account for the fact that the spin rate

vector 0 is in the opposite direction. The results are

16 s. 3  + d 4 16 3
D ( sin %d-+:in 73 s si.

2- K2 1 2 4

+ c1 l-aT [sin X + K sin X + sin 5.18

CT = 0 5.19

s

CT = 0 5.20

s

= - 4d Kd sin), 5.21

33
- 1(l0d) sin2 Xcos X

- 1 3
- ad/1-a. Kd (I sin X cos X + 3 sin X cos X) 5.22

-CT)Y 0 5.23

For the case of both sides of the disk exposed, the torque perpen-

dicular to the spin axis of the satellite is found to average to zero over

one orbit. The average drag and torque on-the-orbit about the x0 axis is

found to doubla as would be expected.

5.3.2. Sp tning Spherical Satellite

The average coefficienLZ of torque on a spinning spherical satellite

can be obtained in term,; of the parameters ,f the Maxwll model from Equations

4.27 through 4.29. The results are

[(1
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-h C, =0 5.24

Crs = KS cd sit, X cos X 5.25

1

C K a d (6 - sin2 X) 5.26

s

Unlike for the case of the disk, Lbe average, over )ne orbit, of torque

perpendicular to the spin axis, CT., is found to be finite for the case

of a spherical satellite. s

5.3.3. Spinning Cone-Disk Composite Satellite

Consider a satellite composed ,f a cone spinning about the axis

of the cone and a flat base represencd by a spinning disk. For convenience,

consider the center of mass of the satellite to be at the center of the base

-' of the cone. For purposes of illustration the gas-surface interaction will

*" be assumed to be of the Maxwell type. The equations expressing the aero-

dynamics of the spinning cone at anglEs of attack have been obtained in

analytical form in terms of the Maxwell model parameters and are given by

Equations 4.20 through 4.26 in chapter 4. Since a cone-disk composite

satellite is a convex body, Equations 5.12 through 5.17 forLhe -isk with

one side exposed t9 the flow can be applied directly. The si';n of CT./

(Equation 5.14) is' reversed for this application since only the "back-

side" of the spinn.ng disk is exposed to the flow.

The average properties of the cone part of the spinning cone-disk

composite satellite are obtained using the numerical techniques described

previously to perform the integration over a in Equation 5.11. For example,

g I

I
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for a cone of a half angle of 15 and X = 450 the following results were

obtained numerically.

- = r 15.4 4 d + a &l"T (10.5 + 2.OA K2) 5.27

C = 1 [-3.12 + 3.1 d a- T (1.3 + 8.7 x 10-3 K 2)] 5.28T., T2 -a'/ a

CT 2 [-.402 K 0.d ad"'l'T (2.3 X 102 K + 8.2 52 3.29

isT - 7._9K ° 5.30

i Tk 2

(CT) [-1.22 + 1.22 ad - adlT (.85 - .38 Y2)] 5.31
0 0

(C r2.76 Ka - al-a T (1.07 K)] 5.32
d YO 2(,

The average properties of a cone-disk satellite are a function of

the cone half angle 6 and the angle X. This functional dependence is illus-

IM t::ated in Figute 5.4 where the average drag coefficient is shown plotted a3

a function of the angle X for various values of the angle 6.

5.4. Average Aerodynamic Properties of Tumbling Bodies

The average aerodynamic properties of a body which is tumbling in

L" a random manner can be found using the techniques developed in this chapter.

Let the orientation of the body with respect to the flow be determined by

f the angles a and X. If the orientation is completely random, all values of

X between 0 and Tr and of a between 0 and 2-r occur for an equal amount of

I
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Figure 5.4 Average drag coefficient Of a cone-disk shaped satellite
as a function of X and 6.

:A



113

time. The average of an aerodynamic property for a random-tumbling body

is expressed by

= f C sin X d% da' 5.33

where C is the aerodynamic property being averaged (see Reference 27)

A single example of the application of Equation 5.33 is given in

the following for the case of a non-spinning disk.

5.4.1. Average Drag Coefficient of a Random-Tumbling Disk

The instantaneous drag coefficient of a disk in terms of the

parameters of the Maxwe~ll model is given by Equation 4.8. In terms of

the angles a and . the instantansous drag coefficient for zero spin rate

is given by

()4o 3  d 3 .3
C (D) =4 cos a sin X + d(2 cosa sinX - 4 cos a sin X)

L Ddisk
+ ad~l- 2 cosa sin 2 \ 5.34

L Due to symmetry, the integration of Equation 5.33 for the disk can be ob-

tained as eight times the integration over a' from 0 to 1 and X from 0 to

The result is

= + 5.35
disk

VThe average drag coefficient of the random-tumbling disk is found to be

considerably less than the maximum possible drag coefficient of fou' for a

stationary disk normal to the flow. The average drag coefficient gLen in

Equation 5.35 is exactly half the drag coefficient of a sphere (see Equation

I- Apprnximation techniques have been commonly employed to determine

; I
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average drag coefficients of tumbling bodies. The results of two approxi-

mation techniques applied to the disk problem are given for comparis6n'to

the results given in Equation 5.35. Using results obtained by Schamberg

(Reference 15)

(C) D 3 + 2 o il- Tu 5.36
Using techniques developed by Sentman and Neice (Reference 27)

(C) .85 - .42 d + .42 5.37

The approximation techniques used in Reference 15 (Equation 5.36) are seen

to give a drag coefficient three times greater than that given by Equatio-i

- 5.35. The approximation technique of Reference 27, on the other hand, gives

slightly lower results than that given by Equation 5.35, but the percerit

error is considerably less than the results of Reference 15.

5.5. Discussion of Results

The results obtained in this chapter have beet, limitcd Co the use

of the Maxwell model because analytical expressions could be obtained in

most of the cases studied. The procedures used to obtain #ohese results are,

howevec, equally applicable to problems using the generaiized model if

numerical methods are employed.

The results obtained have shown than the average aerodynamic pro-

perties of a satellite are of the same form as those obtained in chapter 4

for stationary flow conditions. The average a,rodynamic properties are

found also to be strongly dependent upon thr parameters of the gas surface

interact.on model. In general, the averae aerodynamic properties of
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satellites can be expressed in the following form as a function of the para-

meters of the Maxwell model.

CD~ A + C1A + /F a A

CT B + C1B + x/I-aT B
3.3

S

5.38
ST., CI + d C2 + d/lc-T C3

is3

C T C
. TkI ,=Dfd

s

where the coefficients A, B, etc., are functions of the angle X and the spin-

rate parameter K, and also the half angle 6 for the cone.

r It is, therefore, evident that,as for bodies in a stationary flow,

the possibility exists of utilizing measured, average satellite-aerodynamic

S[ properties to obtain specific information on the gas-surface interaction.

The feasibility is assessed in the next chapter of performing a satellite

L experiment to determine gas-surface parameters by measuring the average aero-

dynamic properties of satellites.

I
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I
6. FEASIBILITY OF A SATELLITE EXPERI14ENT TO DETERMINE THE GAS-SURFACE

INTERACTION PARAMETERS AND THE ATMOSPHERIC DENSITY

The results of the preceding chapter have indicated clearly the

possibility of utilizing measured aerodynamic properties of satellites to

obtain information on the gas-surface interaction. The feasibility of

this experimental conc ept is discussed in this chapter.

The obvious advantage of designing a gas-surface interaction ex-

periment using satellites is that a free molecular flow of high velocity

neutral molecules is generated by the motion of the satellite in its orbit.

As discussed earlier, it has not been possible to duplicate these flow

conditions in the laboratory. As with all experiments, even those per-

formed under supposedly controlled conditions, information obtained on the

gas-surface interaction from the analysis of satellite aerodynamic pro-

perties would be subject to certain uncertainties associated with the ex-

periment. For satJllite experiments of the type proposed in this study,

unaertainties associated-wt the spac. environment could influence the

interpretation and accuracy of cesults. A complete discussion of the

T [major uncertainties a.nd their influence on the proposed experiment is

given in the 13tter part of this chapter. However, since the uncertainty

fassociated with the orbital gas-density is of major importance to tb

proposed experiment, this subject is discussed in the following.

f The reason for the uncertainty in orbital gas-density can be

traced to the lack of knowledge on the drag coeflfcient of satellites

,,hich, in turn, is related to the uncertainty in the gas-surface inter-

action. As an example, consider the measurement of the drag of a satellite
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in which the drag is related to the density by the drag equation given by

1 2-
. iDrag = p A CD

In order to determine the atmospheric density p from the drag measurement,

the drag coefficient, CD, of the body must be known. Due to the lack of

knowledge on the gas-surface interaction, an assdmed value of the drag co-

efficient of 2.2 is commonly used to reduce drag data. 28 From the results

of chapters 4 and 5, it is seen that this assumption could lead to consider-

able error, perhaps 50% or greater, in the determination of density depend-

ing upon the actual values of the gas-surface interaction parameters and the

I: shape of the body.

It is apparent from the above discussion that a satellite experi-

ment designed to obtain information on the gas-surface interaction must,

also, simultaneously, obtain information on the atmospheric density. For

this reason, then, the satellite experiments proposed in this study ore de-

I signed to determine the value of the atmospheric density in addition to

determining the values of gas-surface interaction parameters.

6.1. Gas-Surface Intetaction Experimencs Utilizing Satellite Aerodynamic

Properties

[ Two criteria must be met in order to utilize maasured aero-

dynamic properties of satellites to obtain information on the gas-surface

interaction and atmospheric density. The first criteria is that the number

f" of aerodynamic properties measured must at least etiual the number of un-

known quantities to be determined. The second criteria is that the equations
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expressing the measured aerodynamic properties in terms of the unknowns'

must form an independent set of equations which can then be solved for the

unknowns.

Two general classifications can be made of possible methods of

- utilizin; satellite data which could satisfy the basic criteria given above.

These classifications of pussible methods are:

Method 1: Utilizing data (such as drag) from a nvmber of

differently shaped and/or differently; oriented

satellites.

Method 2: Utilizing data on a number of aerodynamic pro-

perties of a properly designed satellite.

The methods of analysis are similar in both classifications. In Method 1,

data on past or existing satellites would be used while in Method 2 a

satellite is to be designed for the specific purpose of obtaining informa-

tion on the gas-surface interaction. It is not suggested, however, that

either of the two methods be used exclusively. In fact, as will be pointed

out later, a combination of the two methods appears desirable in terms of

a long range program to obtain information on the gas-surface interaction

as a function of the surface conditions and also to obtain information on

T the density and composition of the orbital gas environment.

The procedure, advantages, and disadvantages associated with

the two methods are discussed in the following two sections. Later in this

chapter the feasibility will be illustrated of using Method 2 Lo determine

the parameters of the Maxwell model and the atmospheric density.I I

I F
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6.1.1. Method 1: Utilization of Data From Satellites of Different Shapes

In chapter 5 it was found That the average aerodynamic properties

rof satellites are dependent upon the parameters of the gas-surface inter-

action. In addition, the angle %,which is the angle giving orientation of

jjthe satellite spin axis with respect to orbit, was also found to have an

influence on the coefficients of the unknown parameters. These two factors

f are to be considered in utilizing data from satellites of different shapes

and orientation in making the measurements.

To begin the discussion of Method 1, consider that, for example,

[ drag data were available on a spinning disk, a spinning cone (with flat

base) and a non-spinning sphere. Consider that each of these satellite

shapes has the same surface properties, aze all in the same circular orbit,

and that the gas density is constant over the orbit. Under these considera-

tions and the assumption that the gas-surface interaction is of the Maxwellf [type, the drag measurements of the three would provide sufficient informa-
tion for the determination of the parameters ad' aT and p. The '.act that

the values of ad' aT and p can be determined can be verified from the equa-

tions given in chapter 5 for the spinning disk with both sides exposed

[(Equation 5.18) and the numerical results given for the cone-disk satellite

(Equation 5.27). The average drag for a non-spinning sphere would be the

same as that given in chapter 4 for stationary flow, (Equation 4.30). These

three equations satisfy both criteria of the experi.ent, as can be easily

verified. Using the same set of equations one could also verify that two

spinning disks at different anglesX to the orbital plane could also provide

I a system of independent equations when combined with either the cone-disk

L
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or sphere equations. One can also easily verify that measurements of drag

on, for example, three different sized spheres would not lead to an indepen-

dent set of equations which could be solved for a (TX and p.

The possible experiments discussed above concern the determination

of the parameters of the Maxwell model. The same procedure would be used if

instead the generalized gas-surface interaction model is used. In order to

use the generalized model, numerical methods would have to be employed

throughout the analysis.

The ideal conditions considered above would not occur in practice.

In the actual application of Method I of using past drag data, assumptions,

which would introduce errors into the analysis, must be made in order to use

data from different satellites. One assumption that may have to be made is

that the gas-surface interaction is the same on all the satellites being used

in the analysis. Also, in order to analyze dat- from satellites in non-

circular orbits, an assumed atmospheric density model must be employed. The

same model would also have to be employed in order to use any data from

satellites which are in different orbits. In addition, the satellites would

have to be assumed to be approximated by convex shapes, since there is at

present no adequate method available to analyze concave shapes.

In light of the many assumptions which must be made in the analysis

of existing satellite data, it is concluded that data from a large number of

satellites would have to be analyzed and correlated in order to reduce the

errors introduced by the assumption. The results of such an undertaking

*" could, however, yield a considerable amount of information not only on the

gas-surface interaction, but also on the validity of the assuihptions used,.

I -
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such as the atmospheric density model.

6.1.2. Method 2: Utilization of Data From a Single Satellite

The design, manufacture and launching of a satellite is an expen-

sive operation and therein is the principal disadvantage to Method 2 in com-

parison to the less expensive analysis of existing data of Method 1. There

are, however, many advantages to a Method 2 analysis which wId utilize data

from a satellite which is specifically designed to obtain information on the

S gas-surface interaction. The principle advantage would be the accuracy of

results obtained, an accuracy which in all probability, could not be obtained

in an anal-isis of past satellites.

' jIn order to illustrate the basis of Method 2, consider the cone-

disk satellite which was analyzed in chapter 5. The average drag and torque

Ii coefficients of the -one-disk satellite were of the following form in terms

of the parameters of the Maxwell model.

C1 = A I+ A ? + A Vlad/'' 6.1

CT = BI + B2?d + B3 d /l-aT 6.2

C =dC 6.3
T d
sSwhere CDis the average drag coefficient, CT is the average coefficient of

p
torque which acts perpendicular to the satellite spin axis (CT will be

P

interpreted later as being the coefficienL of either the i' -or j' component

of torque), and CT  is the average coefficient of slow down torque which is
Ts

in the direction of the spin axis. The coeeficients A1 1 A2 , 3 3 BI' B2 ) B3 )

L

t

-±
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and C are functions of X, 6, and K as discussed in chapter 5.
r Consider now, that D, T., and T are measurable quantities so that

the following set of equations could be obtained
* 1 2- Aia

D DI 2c A =A p 4 A2 P a d + A3 p ad % T 6.4

1 2--
STI U A r K = B p + B d + B3 p a d aT 6.5

* 1 2--
Ts = I U A r K = C 6.6

s s2 G K CP ad

in which D , T , and T are known from measurements, These three equations

I satisfy the two basic criteria established previously. Solutions for p, d)

and a T can be obtained analytically in trms of _he measured quantities D

T and T and the coefficients A1 , A2, etc. These results are
p s

* * *

T CA -D CB + T (A2B3 - A3 B)
V P= 3 s 26.7

CE

+T E
ad Ts *6.8

d T CA3 -D CB3 + (A2 B3 - A3 F.2 ) T

-T CA + D CBI - T -i_ 1 1 ( A2 LI-AIB2 )6.

T E
S

I where E A3BI -AIB 3 "

The cone-disk satellite is one example in which the aerodynamic

properties do provide equations which satisfy the basic criteria. This is

not generally true of other satellite shapes. For example, thk sphere equa-

tions given in chapter 5 show that CT and CT for the sphere are not inde-

p s
1 pendent. In another example, the equations for the disk with both sides

exposed show that CT is zero and therefore the first criteria is not

p
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satisfied.

As in Method 1, the Maxwell model is used as a convLnient example

The technique of analysis is, however, also applicable to the determination

of the parameters of the generalized model, if numerical methods ar- employed.

6.2. Accuracy of a Satellite '.xperiment

The accuracy of determining the gas-surface interaction parameters

and the atitrospheric density in a satellite experimeat is, of course, depen-

dent upon the accuracy of the mtasuremento of the average satellite aero-

i dynamic properties. The accuracy is also ck_,pendent, however, on the shape or

shapes of satellites from which data is obtained. For example, if drag

measurements were made on three satellites which differed only slightly from

that cf a sphere, a solution would not be possible because even minor errors

in drag measurements would be greatly amplified. These factors are illus-

trated by taking the specific example of the cone-disk satellite used in the

previous section.

The accuracy of determining the unknown parameters p, 1 and
d) Tu

using a cone-disk satellite is dependent upon the accuracy of measur! ig D

T and T . An estimate of the errors in the determination of p, ad' andp s

aT can be made by taking the first partial derivatives of each of the un-

known parameters with respect to D T , and T . Taking the derivativesp s

of Equation 6.7, 6.8, and 6.9, the following estimation of the errors is

obtained,

A AT (A2B -AB) AT*
3 3C 2 23 3 2 s

p DE E * d E *
D p T T

p s



° I
d B 3 AD A3 A~ +l+~ ET *B-AB T

d _ 3 3 P + + 2+3 321 S 6.11
d D p p s

_'_ 1 2B, AD* 2A IAT (2A I T 2BI D) AT
I--c .J_ __2_. 1 D P 6.12

-T 1d E D p T T
p sf Assume that the absolute values of the measurement errors, lAD*/D*I,

j.T /T *1 and IAT s*/T s*I are all less than or equal to some maximum possibi .

i | valh.. of IJAM/MI. Then, for the wotse case, when all the errors are added, the

maximuo nossible errors in the determination of p, id) and wT Would be given

by

I [IC B C A + -A 0 6.13

S"E D  3 1  ICT A3 1 + I +1Od (A2 B3  A3 B2 ) ]-'M 6.14f d p

i [12 B11 + 12 CT Al 12CT A1 - 2 CDBII]I--I 6.15
'/-a T adE D pM

T The quantities multiplying IL--I on the right hand side of the

above equations represent, for a given [AN/Mj, the maximum error which is

I associated with the shape and orientation of the satellite. That is, these

quantities vary as a function of the cone half angle 6 and the orientation

of the satellite spin axis with respect to the orbit which is determined by

"f the angle X. Using numerical methods, the term multiplying JAM/MJ in Equa-

tion 6.15 was evaluated and the results are shown plotted in Figure 6.1 as

a function of X for various values of 6.

Figure 6.1 shows that some X-6 combinations are definitely better
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Figure 6.1. Maximum error in determining VlI-T using a cone-disk shaped
satellite as a function of X and S.
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than others. In fact, for some combinations the coefficient of JAM!/M be-

comes large, implying that an experiment employing those N-6 combinations

would not yield acceptable results. The X-6 combinations which give mini-

mum possible error are, of course, the most desirable. Results similar to

7 those shown in Figure 6.1 were also obtained for the error estimates of p

and 0d" The error in determining a is directly related to the valve of ad)

as seen in Equation 6,15. As ad approaches zero, the error in the determina-

tion of aT would become infinitely large. This is expected since for the

Maxwell model the value of ad de ermines the fraction of reflected force

which is dependent upon the parameter CT. Thus, as cd becomes small, the

effect of aT on the force and torque on the satellite is greatly diminished.

- At ad = 0, the parameter aT becomes meaningless.

The results shown in Figure 6.1 were obtained using the coeffi-

cients of the j' component of torque. Results were also obtained using

the i component of torque. Results were obtained for a wide range of 6s

values for both cases. These results showed the following in general

I. Utilization of measured values of the.j' component of
-s 5

torque give consistently lower values of maximum possible

error in the determination of p, ad' and aT, as compared

to the results obtained utilizing measurements of the i'
ass

component of torque.

**0
2. Values of X greater than 450 give lower error when the

3 " component of torque is utilized while values of X

less than 45° give lower error when the '" componene of
s

torque is utilized.

1'
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3. The error in determining (xT is significantly different for

using either the i'-or j'-component of torque. Use of the

. -component of torque was found to consistently give maxi-

mum error values of at'least an order of magnitude greater

than that obtained using the j'-componnt of torque.
5

The difference in possible accuracy between using either the i'-

component or the j s-component of torque is best explained by referring to

the numerical results given in Equations 5.27, 5.28, and 5.29. These equa-

tions show that the drag and the i'-component of torque are functionally
S

similar in their dependence on the unknown p, adx and aT. The is-component

of torque has, however, a func'ionally different dependence on the unknowns

than either the drag or slow down torque. Therefore, even though it is

possible to use either the is- or j - components of torque in an experiment,S

use of the j-component of torque is more desirable in terms of the accuracy
5

of the experiment.

The procedure just outlined can be used to find an optimum satel-

[ lite design for performing a gas-surface interaction and atmospheric density

experiment. In such an optimization study, factors such as size and weight

Irequirements, orbital regression effects, and others would be considered in

addition to the satellite shape. Considering only 6 and X, however, the

cone-disk satellite was found to give a coefficient of IlbM/Ml in the range

of 3-5 for each of the error estimates in p, cd and CT. The inherent

accuracy of this experiment is then very good since the errors in the measure-

ments ILA/MI could be made small depending upon the magnitude of the mea-

[ surable quantities and the measurement techniques employed. In addition, if

1I



I; 128

measurements at one altitude could be correlated with those made at other

I altitudes, the statistical error values could be made aven lower. The cor-

relation of measurements made at different altitudes would require the use

I of an assumed atmospheric density model. The magnitude of measurable quan-

I ities in a satellite experiment is discussed in the next section.

6.3. Magnitudes of Measurable Quantities in a Satellite Experiment

In a satellite experiment such as described above, the quantities

D ,T and T would b,- determined froin measurements made on the orbital

-decay rate, the satellite precession rate and the satellite spin decay rate.

An estimate of the magnitudes of these rates can be determined from the ex-

r Tample results obtained for the cone-disk satellite.

Consider first the determination of D which contains the drag D.

For the case of circular orbits, assuming that the altitude losses due to

7 drag effects are small, the decay rate of the orbital radius, ro, can be

approximated by the following expression given in Reference I,

Ar
o 4TrB 6.16rev av o av

where B is the ballistic coefficient CDA/2m, m is the mass of the satellite,

Sav is the average atmospheric gas density at the average orbital radius ray.

The mass m of the satellite is directly proportional to the density ps of the

material used tc construct the satellite. Let the proportionality be ex-
Iwo

pressed as

m = p r, A 6.17

*

where A is the reference area of the satellite and r, has units of length and

) ,.'-
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is the proportionali factor determined by the design of the satellite.

Using Equation 6.17 a, ie definition of B, Equation 6.16 becomes, dropping

the "av" subscripts on p and r
0)

Ar D p~ r p 0-°/rev *-D o --C C 6.18
0 pSr, pS r,

The convenient non-dimensional form of Equation 6.18 can also be

obtained for the precession rate and slow down rate of the satellite. For

high spin rates, the Luler equations for the dynamics of a spinning body

under the action of external torques reduce to

T. /= I I , 6.19
s S

IL T., = 1i Wi, 6.20
s S

T 12(+ Wk ) 6.21

S S

where II is the moment of inertia about an axis perpendicular to the spin

axis, 12 is the moment of inertia about the spin axis, 0 is the spin rate

and the terms W.,, i, and u)k / represent the components of precession rate01is s ks

of the spinning body. Assume for the purposes of the present study that the

L satellite can be designed to be iso-inertial, II = I2, regardless of the

external shape. In terms of the notation of the preceding chapters, the

pre:ession rate wi is equal to X. Therefore, Equation 6.20 becomes

AX/rev = 2Tr T. /() 6.22

where w is the angular velocity of the orbit. The terms in Equation 6.22

can be expressed as follows

if_ _
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T. CT I A rT.,= .

-- s js
S s

= U Kir00

and

U =r w
O 00

substituting for T.,, wo, and 0 into Equation 6.22, the following is obtained
S

.js - -2
S A r 6.23

AX/rev = 2r K T p ro  211

Similar to what was done for the drag case, assume that the moment of inertia

I K is proportional to the material density of the satellite, ps. Let
1 -- 2 *

I s Ar r2  6.24

where r2  has units of length and is the proportionality factor. The quan-

tity r2  may or may not be equal to the similar term rI which was used for

the drag equations. Substituting Equation 6.24 in Equation 6.23, the follow-

ing is obtained

-" c Tj/p

AW/rev = £ * r 2Tr ',r 6.25
P Psr2* K psr 2*

In a similar fashion, the satellite spin decay rate is found to be

Tk
Ar)0*kr 0  pr 0, " A -/rev =T o -2TT s ro 6.26

.C s pr 3* K Pr 3*

where the term r3* would be equal to r2* for an iso-inertial body.

Summarizing, the rates of change in the measurable quantities of a
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satellite expeiiment are found expressible in the following non-dimensional

forms.

Ar p r
-- rev = 2 sCD 26.27

C T
r p rAM/rev = 2.T pr 6.28

K / pr° 6.29-Irev = 2T K pr3*

The products pSr psr 2*, and p sr3s* are quantities which may be

controlled by the satellite design. In general, large solid satellites would

have p sr* values which are large whereas light satellites would have small

values of psr* , In terms of orders of magnitude, an upper limit for a large

2
solid satellite would be in the order of 100 gm/cm . A lower limit for psr*

could be 10-2 gm/cm 2 for a thin walled hollow satellite.

The product p r varies, of course, with the orbital altitude of

i L the satellite. Figure 6.2 shows the variation of p r ° for a high, low, and

1 medium density at )sphere versus the orbital altitude h, where h=r -; re =

(radius of Earth).

Using some representative values of CD, 0T , and CT, which were

obtained in the numerical studies of chapter 5 on the'cone-disk satellite,

the plots given in Figures 6.3, 6.4, and 6.5 show bow the measurable quan-

tities vary with altitude h, folz psr* = i. Figure 6.3 can also be inter-

preted in terms of AT/r, the rate of change in the period of the orbit. The

rate of change in period is related to the altitude decay rate by the

[
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Figure 6.2. High, low, and medium atmospheric density variation with
altitude (from tables in Reference 29).
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Figure 6.3. Relative average altitude loss per (circular) orbit for a

cone-disk satellite.
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Figure 6.5. Relative average spin decay of a cone disk satellite per
(circular) orbit.
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following equation,

I A3 Ar
T/rev = /rev 6.30

T 2 r
0

SThe results shown in Figure 6.4 are given in terms of sec of arc/rev.

The results given 4n Figures 6.3, 6.4, and 6.5, clearly illustrate

the feasibility of proposed experimental techniques in terms of the magnitude

of measurable quantities. In fact, the measurements could all be made using

an optical technique such as that proposed by the Coordinatei Science Labora-

12,13I tory. The advantage to an optical readout system is that the satellite

itself could be completely passive in that sunlight reflected off the surface

of the satellite can be used to determine the orientation of the spin axis

and thus be able to determine the precession rate of the satellite spin axis.

The technique proposed by CSL is fully described in the References 12 and 13.

The results of this extensive study made by CSL of the feasibility of the

optical readout technique indicate that precession rates of the order shown

in Figure 6.4 would be well within the capabilities of the optical technique.

Satellite spin rate data could be obtained directly from the observations of

reflected sunlight from the satellite. The optical technique is, of course,

a standard method of obtaining orbital drag data.
-b

6.4. Assessment of Results Obtained From a Satellite Experiment

In the preceding discussions, a satellite experiment to determine

the paramete.s of the Maxwell model was studied mainly to illustrate its

feasibility. Hoiever, the accuracy of the interpretation of the measdr-ements

depends upon how well the assumed model approximates the actual reflection

phenomena.

[I
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In order to illustrate how, for a special case, erroneous result;

could be obtained, take an experiment in which the measurements are inter-

preted in terms of the parameters of the Maxwell model. As an eAtreme case

consider that the actual reflection process is a perfect backscatter. That

is, irrespective of the angle, e, at which the molecules impinge on the sur-

face, the molecules are always reflected back in the same direction. PerfecL

backscatter is a type of reflection which cannot be approximated by the Max-

well model (or the Schamberg model either).

The procedure outlined for an experiment using a cone-disk satel-

lite would yield values of ad' T' and p for this extreme case of perfect

backscatter; however, it can be shown that ad and cT would be equal to one

1and the gas-density would be twice its actual value.
The above example serves to illustrate the importance of inter-

preting the satellite measurements in terms of a model, such as the gen-

eralized model, which can cover a wide range of possible gas-surface inter-

actions. In the range of possible reflections between specular and diffuse,

the results of chapter 4 indicate that use of either the generalized model

or the Maxwell model could be expected to yield results which could reason-

ably approximate the actual reflection process. For the case of backscatter

or over specular reflectious, however, use of either the Maxwell or the

Schamberg model could not be expected to yield valid results on the gas

F.. surface interaction parameters. The Nocilla model also could giveexroneous

results if the actual distribution function were far from the drifting Max-

wellian assumed by Nocilla.

Solutions for the unknowns when the generalized model is used
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must be obtained using numerical methods since in general the resulting

5equations are trigometric in the parameter P.. Trigometric equations can,

however, lead to multiple solutions for a given set of measurements. If

j, multiple solutions are obtained, the" additional experiments would have to

be performed which are designed to detect the correct solution. It must be

concluded that, even considering the possibility of multiple soluLions, the

J use of the generalized model in the interpretation of satellite data is to

be favored over the use of a given particular model. More pecific models

Icould be employed after the analysis using the generalized mcdel has indi-

cated the general character of the reflection process.

In order to illustrate the application of the generalized model,

consider a retlection which is assumed to be composed of three separate

beams; beam I (j=l) is in the backscatter direction (P,=2), beam 2 (j=2)

is normal to the surface (P2=1), and beam 3 (j=3) is in the specular

direction (P3=0) (see Figure 6.8). The effect on the drag of a body due

to a reflection of this type can be determined from the equations givei

-s in section 4.3.1. For the values of P. given above, the drag coefficient

for a flat plate, cylinder, cone and sphere are given by,

(CD)plate = sin es (2 + 2olVl-,I i + 2 sin e0s  l- 2

- 2 cos 29s a3l-C'3  6.31

(C)yid 2 + 2a +l- la F + . - 6.32
D cylinder lil- 2v'I + 2 213C3 3

( cone =2 +2a 1 l-ci + 2 sin 6C2102

-2 cos 26 a Tl-a 3 6.33
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Figure 6.6. Notation for a possible three-lobed reflection.
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(C)=+oJ-+a/- 2  6,34
D sphere + + 3 a~l-12

These results serve to illustrate the statement made at the end of chapter 2

that the aerodynamic properties are specified by a choice of only two quan-

tities for each reflected beam; P. and a.11-oi,. The above equations show

that the quantities a. and /l-a. always appear as the product in the ex-

pressions for aerodynamic properties and could therefore be considered as a

4single parameter.

The results given in Equations 6.31, 6.32, 6.33, and 6.34 also

illusurate that, without prior knowledge of either a. or ., only the quan-

tities A/l-0. could be determined in an experiment which utilizes measured

aerodynamic properties of convex shapes. In application to satellite experi-

ments then, if no assumptions are made on the distribution function cf re-

flected molecules (such assumptions are made in the Maxwell, Schamberg and

Nocilla models), the results of a satellite experiment using convex shapes

are limited to obtaining information on the number of reflected beam com-

ponents, the magnitude of each component, and the direction of each compo-

nent. This information, even though limited, would be sufficient to deter,

mine the aerodynamic drag, lift, and torque properties of any convex shaped

body, spinning or non-spinning. Such information would also be utilized to

design future satellite experiments to obtain more refined information on

the gas surface interaction. Altbough such shapes are not considered in

this study, it is proposed that concave shapes could be utilized to obtain

information on the distribution function of reflected molecules since the

aerodynamic properties of these shapes are dependent upon the properties of

* reflected qistribution.

41
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6.5. Significance of Satellite Experiments to Determine Gas-Surface Inter-

action Parameters ad the Atmospheric Density

The examples given in this chapter have employed idealized con-

ditions such as circular orbits and constant density which would not be the

jcase in an actual experiment. As mentioncd in the introduction to this

chapter, a number of uncertainties are associated with satellite experi-

m tnts which can affect the interpretation of results. Two of the major un-

certainties have already been adequately discussed; the uncertainty associ-

ated with the atmospheric density was discussed in the introduction and theiuncertainties associated wi,.h the gas-surface 4nteraction model has been

discussed in the preceding section. The significance of performing a satel-i lite experiment in light ef some additional uncertainties will be discussed

here. To be considered are uncertainties concerning the condition oi the

satellite surface (ie. degree of surface contamination by adsorbed gases,

composition cf surface-adsorbed gases, and roughness of surface), composi-

tion of the atmosphere, and variation oi atmospheric density with altitude.

6.5.1. Consideration of Surface Conditions

IThe gas-surface interaction is known to depend upon the degree

ano composition of adsorbed surfaces (see, for example, the experimental

results given in Reference 30) which, in the satellite environment, is not

well known. The satellite environment in some respects acts like a cleans-

ing environment in that the very high vacuum combined with the effects of

high energy solar and cosmic rays tend to rid the surface of trapped gas

molecules. On the other hand, the constant bombardment of high velocity gas

I;_
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molecules as the satellite travels in its orbit causes the surface to again

be contaminated with trapped gas molecules. The cleansing and contaminating

processes take place continuously. The equilibrium conditions if reached

have not as yet been determined. This uncertainty enters the interpretation

of results when measurements made at one orbital altitude are correlated

to those made at other altitudes.

Instead of treating the surface conditions as uncertainties in the

experiment, it is suggested that a satellite experiment be designed to ob--1
tain information on the uncertainties. One possible approach is to first

contaminate the satellite surface with a known contamination which would be

expected to degas at a known rate in the relative vacuum of the orbital en-

vironment. The degassing rate could then be correlated with the measured

rates of change in the aerodynamic properties of the satellite to determine

. the effect of contamination on the gas-surface interaction. That such an

approach would be feasible is indicated first by the results obtained in

this chapter on the possible accuracy of a satellite experiment. Secondly,

in some preliminary studies performed by Cohen3 1 , it was concluded thac

contaminates such as water vapor on a metal surface could be expected to

degas down Lo I/e of the initial surface coverage in a time of about 5 to

10 weei-s. This rate of change estimate combined with the expected accuracy

of the satellite measurements indicates that such an experimenc may be

feasible.

The effects of other surface properties on the gas-surface inter-

action could also be studied by making accurate measurements of the aero-

dynamic properties as a function of time and then correlating the results

..
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with known variations of the environmental conditions. For example, for

F satellites with long lifetimes, the satellite surface could be expected to

become rougher with time due to the bombardment of micrometeorites, dust

~' particles and high energy cosmic rays (see for example Reference 32)..

The effect of the gas-surface interaction on surface roughness could then be

assessed by correlating changes in the satellite aerodynamic properties with

what is known about the roughening effects of the space environment. Data

from satellites which have changing, or controlled surface temperatures

could be utilized in a similar manner to obtain information on the effect

of surface temperature.

6.5.2. Consideration of the Composition of the Atmosphere

The composition of the earth's atmosphere is known to vary con-

siderably with altitude and solar activity (see for example Reference 29).

The average molecular weight at 1000 km. varies from 1.47 for a low-dencity

atmosphere to a valu. 15.04 for a high density atmosphere. At 300 km.

the variation is frori 16.89 to 22.46 for the low and high density atmo-

spheres. (Values of molecular weight obtained from Reference 29). As a

I satellite orbit decays, then, the species of gas molecules which impinge

on the satellite surface will change in concenLration. The change in gas-

1specieo concentration with altitude enters into the interpretatioi -,f rt_-

suits when measurements made at one altitude are correlated to those made

at other altitudes. Tw.o uncertainties are involved; the gas-surface inter-

action as a function of gas-species concentration and the concentration of

gas-species as a function of altitude.
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As with the uncertainties in surface conditions, it is proposed

here that the u.nceitainties in the atmospheric composition be considered un-

known and be determined by satellite experiments. One possible approach is

to consider each species of gas separately. That is, instead of the average

density of the atmosphere, p, consider that the free stream density is com-

posed of a separate density, pi' for each species where p = Epi" In addi-

tion, for each species of gas, i, consider the gas-surface interaction to be

-. determined by parameters of the generalized model (a/l-a.)i and (P.).. For

example, the drag of a non-spinning sphere would then be given by

D. _ 4(1-cos TT(
Dsphere - Z P f2 +Z ( l-.) [( 4s (P 3'. 6.35

U2A . j

Expressions such as Equation 6.31 could also be developed for other satellite

shapes. Then, using the same procedures as outlined earlier in this chapter,

it is proposed that the unknowns pi,(P.)i, and (a jl-ai) could be deter-

.4 9 mined from measurements made on the aerodynamic properties of satellites.

-. Certainly for such a large number of unknowns, a single satellite experiment

would not provide sufficient information for the determinations. However, a

number of properly designed satellites could be utilized along with a care-

ful re-evaluation of past drag data to obtain a considerable amount of infor-
-p

mation on the unknowns. The values of pi could be correlated with models

of the variation in the composition of the atmosphere to determine which

model, if any, gives thi most consistent results. Such an analysis would

then provide information on both the atmospheric composition and the gas-

surface interaction as a function of gas-species.

K
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6.5.3. Variation of Atmospheric Density ModelsIIn the determination of the atmospheric density, a model of the

relative variation of atmospheric density with altitude must be assumed.

Such a model must be utilized in the analysis of elliptic orbit's and also

in correlating measurements made at one altitude with those made at other

altitudes. An error in the determination value of p is then introduced due

Bto the uncertainty associated with the assumed m6del of the atmosphere.

As with the other uncertainties in a satellite experiment, it is

suggested that this uncertainty could also be removed by a number of

satellite experiments and re-evaluation of past drag data. The procedure

would be much the same as outlined in the previous section on atmospheric

composition models.

[
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7. SUMMARY AND CONCLUSIONS

A generalized model of the gas-surface interaction was developed

to cover a wide range of possible interactions. This model was incorporated

into the aerodynamic equations of spinning convex bodies in a free molecule

flow in order to study fully the influence of the gas-surface interaction on

the aerodynamic properties of satellites in this flow regime.

Analysis of the aerodynamic properties of four spinning bodies,

(disk, cylinder, cone, and sphere) at angles of attack revealed the strong

* influence of the gas-surface interaction, especially on the torque properties.

The aerodynamic torque acting on a body in free molecular flow was found to

-, be caused by I) the moment of drag and lift forces about the center of mass

of the body and 2) forces tangent to the surface induced by the spinning of

the body. Aerodynamic torques of the first type are experienced by both

spinning and non-spinning satellites and are well known. Aerodynamic torques

of the second type which are spin induced have components both parallel and

- "perpendicular to the spin axis of the body. The ccmponent o -orque parallel

to the spin axis would cause the expected decay in the spin ,te cf a spin-

ning body. The components of torque perpendicular to the spin axis wo'uld

cause a gyroscopic precession. The spin induced torque on a body was found

to be more strongly dependent on the gas-surface interaction than aerodynamic

torques of the first type.

Spin induced effects were also found in the aerodynamic drag and

lift properties of spinning bodies at angles of attack. In general, it was

found that spinning bodies experience higher values of drag and lift than do

A
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non-spinning bodies. Also of interest is a lateral force experienced by

spinning bodies in free molecular flow which is entirely spin induced, The

spin induced lateral force was found to be also strongly dependent on the

gas-surface interaction, as for the spin induced aerodynamic torques. The

aerodynamic, spin induced lateral force is analogous, but oppositc in direc-

tion, to the Magnus effect on spinning bodies in viscous flow.

The development of the generalized gas-surface interaction model

and the analysis of aerodynamic properties of spinning bodies formed the

basis for proposing satellite experiments to obtain information on the gas-

surface interaction as well as the orbital atmospheric density. it was

found that the average aerodynamic properties of spinning satellites are

strongly dependent on the parameters of a given gas-surface interaction model.

It is, therefore, proposed that the measured average aerodynamic properties

of spinning satellites be utilized to determine precise values of the gas-

surface interaction parameters and the orbital gas density. The preliminary

phase of the study of the feasibility of these satellite experiments was

conducted. This phase of the study covered 1) the consideration of schemes

utilizing the aerodynamic properties of satellites of various shapes and

[ orientations, 2) the assessment of the accuracy of determining the gas sur-

face-interaction parameters and the orbital gas density, 3) the estimate of

the magnitude of measurable quantitites in a satellite experiment, and 4)

Jthe investigation of the possible effects on accuracy introduced by uncertain-
ties in the space environment and satellite surface conditions. On the basis

of these results, it was established that the proposed satellite experiments

are feasible and could provide sig'reficant information on both the gas-surface

-
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interaction at satellite velocities and the near-earth atmosphere.

D~ue to the considerable uncertainties associated with the gas-sur-

face interaction at satellite velocities, it was found that the generalized

modl of the gas-surface interaction is necessary in the interpretation of

results of the proposed satellite experiments. Since the aerodynamic pro-

perties of convex bodies in a free mol. flow are nt dependent on the spe-

cific form of the distribution of reflected molecules, gas-surface inter-

action models which incorporate a specific distribution function are not only

unnecessary but also undesirable in that considerable error can be introduced

in the interpretation of aerodynamic measurements by using such models. For

this reason, the use of the generalized model developed in this study is pre-

ferred since no assumption was made on the distribution o: reflected molecules

other than the existance of an average velocity and direction. It was sug-

gested that the generalized model could also be applied to the interpretation

of results obtained from laboratory experiments in order to parameterize in,

a general manner the results of molecular beam studies. The parameterization

of these results would facilitate the comparison of the various results and

could serve as a basis for suggesting more precise gas-surface interaction

models. Laboratory experiments on gas-surface interaction which measure

forces and torques are particularly suitable in using the generalized model

to interpret the results.

The study of feasibility of the satellite experiments proposed in

this study has been supported by the National Aeronautics ani Space Adminis-

tration at the George Marshall Space Flight Center. The aerodynamic pro-

perties of near-earth satellites are of major importance in determining both
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the lifetime of a satellite and the motion of the satellite about its center

, V of mass. Since NASA is planning in the future to orbit satellites of larger

size (such as manned space stations) and satellites requiring greater orien-

tation stability than satellites of the past, there is an urgent need for

precise knowledge of the character of the gas-surface interaction and the

composition of the atmosphere in order to properly and economically design

[ these future satellites. For this reason, NASA is considering an extensive

experimental program called Project ODYSSEY33'34 which is planned to obtain

information on the gas-surface interaction and the orbital environment by a

number of satellite experiments. The techniques of analysis developed and

the results obtained in this study have direct application to the design of

satellite experiments and the interpretation ,af results of these experiments,

as well as the interpretation of existing satellite data, with the objective

to obtain information on the gas-surface interaction and the atmospheric

[composition.

[
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